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Yebin Liu, Genzhi Ye, Yangang Wang, Qionghai Dai
and Christian Theobalt

Abstract Capturing real performances of human actors has been an important topic
in the fields of computer graphics and computer vision in the last few decades.
The reconstructed 3D performance can be used for character animation and free-
viewpoint video. While most of the available performance capture approaches rely
on a 3D video studio with tens of RGB cameras, this chapter presents a method
for marker-less performance capture of single or multiple human characters using
only three handheld Kinects. Compared with the RGB camera approaches, the pro-
posed method is more convenient with respect to data acquisition, allowing for much
fewer cameras and carry-on camera capture. The method introduced in this chapter
reconstructs human skeletal poses, deforming surface geometry and camera poses
for every time step of the depth video. It succeeds on general uncontrolled indoor
scenes with potentially dynamic background, and it succeeds even for reconstruction
of multiple closely interacting characters.

5.1 Introduction

In recent years, the field of marker-less motion estimation has seen great progress.
Two important lines of research have recently emerged in this domain. On the
one side, there are multi-view motion capture approaches that reconstruct skele-
ton motion and possibly simple body shape of people in skintight clothing from a
set of video recordings that were taken from around the scene, e.g., [1–6]. Human
performance capture approaches take one step further and not only reconstruct a
motion model (like a skeleton) but also detailed dynamic surface geometry as well
as detailed texture, e.g., [7–12]. However, these approaches are still limited to mostly
controlled studio settings and static frame-synchronized multi-video systems which
often feature 10 or more cameras.
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On the other end of the spectrum are methods for marker-less motion capture
from a single camera view at interactive or near real-time frame rates. Estimation of
complex poses from a single video stream is still a very challenging task. The recent
advent of depth cameras, such as time-of-flight sensors [13] and theMicrosoftKinect,
has opened up new possibilities. These cameras measure 2.5D depth information at
real-time frame rates and, as for the Kinect, video as well. This makes them ideal
sensors for pose estimation, but they suffer from significant noise and have, at best,
moderate resolution. Therefore, (using a single depth camera) it has been difficult to
capture 3Dmodels of a complexity and detail comparable tomulti-view performance
capture results.

This chapter introduces a method to do full performance capture of moving
humans using just three handheld, thus potentially moving, Kinect cameras. It recon-
structs detailed time-varying surface geometry of humans in general apparel, as well
as the motion of the underlying skeleton without any markers in the scene. It can
handle fast and complexmotionwithmany self-occlusions. By resorting to depth sen-
sors, it can be applied to more general uncontrolled indoor scenes and is not limited
to studios with controlled lighting and many stationary cameras. Also, it requires
only three handheld sensors to produce results that rival reconstructions obtained
with recent state-of-the-art multi-view performance capture methods [14, 15].

The key technology in this method is a tracking algorithm that tracks the motion
of the handheld cameras and aligns the RGB-D data and that simultaneously aligns
the surface and skeleton of each tracked performer to the captured RGB-D data. The
algorithm also needs to be robust against the sensor noise, as well as missing data
due to multi-Kinect interference and occlusions in the scene. It therefore introduces
an efficient geometric 3D point-to-vertex assignment strategy to match the Kinect
RGB-D data points to the geometric model of each performer. The assignment crite-
rion is stable under missing data due to interference and occlusions between persons.
Based on this criterion, a segmentation of the scene into performers, ground plane,
and background is implicitly achieved. As a second correspondence criterion, it
detects and tracks SIFT features in the background part of each video frame. Based
on these model-to-data assignment criteria, the pose parameters of the performers
and the poses and orientations of the Kinects are jointly estimated in a combined
optimization framework. Finally, the nonlinear objective function can be linearized
and effectively minimized through a quasi-Newton method.

The experimental section shows results on several challenging single- and multi-
person motions including dance and martial arts. Also, quantitative proof of the
accuracy of the reconstruction method is given by comparing it to an available video-
based performance capture approach [12].

The technique presented in this chapter is a revision of former published papers
[16, 17].1

1 [2014] IEEE. Reprinted, with permission, from [Genzhi Ye, Yebin Liu, Yue Deng, Nils Hasler,
Xiangyang Ji, Qionghai Dai, Christian Theobalt, Free-viewpoint Video of Human Actors using
Multiple Handheld Kinects, IEEE Trans. Cybernetics, 43(5), pp 1370–1382, 2013].
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5.2 Related Works

Most human performance capture approaches reconstruct human skeletal motion in
controlled studios with a large number of cameras [3, 18, 19]. They usually employ
a template skeleton with simple shape primitives [2, 5, 20] to fit the image data by
optimizing an energy function parameterized by the template skeleton. This energy
function usually exploits motion cues, such as silhouette, edge, and salient features.
Typically, they are solved by local [2] or global optimization [20, 21], or the combine
of the two [12].

Some advanced methods further reconstruct a detailed 3D deforming surface
[7, 12, 22] of people in more general clothing. All these methods take advantage
of a more elaborate shape and skeleton template, to improve the tracking accuracy
while enforcing some surface refinement [12] or shading refinement [23] for better
geometry reconstruction, or possibly reflectance reconstruction [24]. Recently, Wu
et al. [22] proposed the integration of shading cues and develop the local linear
optimization for more reliable skeletal pose tracking from indoor multi-view video.

The recent trend of marker-less motion capture aims to simplify the capture setup,
e.g., by reducing the number of cameras, capturing in outdoor scenes, or using hand-
held devices. Outdoor marker-less motion capture with handheld cameras is studied
in the pioneering work by Hasler et al. [25], but the accuracy of their method is
restricted by the limited silhouette cues. Under the assumption of fixed distant global
illumination, Wu et al. [26] employed a handheld stereo rig for performance capture
in front of a general background, which significantly broadens the operation range
of marker-less motion capture. But their local optimization and fixed global illumi-
nation model is only demonstrated for relatively restricted camera motion. However,
only a frontal view of depth information from a binocular camera cannot guarantee
a robust tracking under fast motion and serious occlusions. Wei et al. [27] further
studied motion tracking from a monocular video. This challenging problem requires
intensive manual interventions.

The prevalence of consumer depth cameras, such as theMicrosoft Kinect camera,
opens up new opportunities to solve fundamental problems in computer vision [28]
and especially in human pose estimation [29, 30] and motion tracking [31]. Shotton
et al. [32] and Ganapathi et al. [33] developed real-time motion estimation systems
for indoor scenes captured recorded by a depth camera, which enables enormous
applications in human–computer interaction and gaming. Typically, to achieve real-
time performance, discriminative methods [34, 35] are applied to predict skeleton
pose directly from the depth map by a trained regression model. Some recent works
[31, 36, 37] further improved these discriminative methods with local optimization-
based motion tracking. However, pose tracking with a single depth camera is far
from robust and accurate and is challenged by motions with serious self-occlusions.
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Fig. 5.1 Overview of the processing pipeline. a Overhead view of typical recording setup: three
camera operators (circled in red) film the moving people in the center (blue); b input to the
algorithm – RGB images and the depth images from three views; c Registered RGB-D point cloud
from all cameras; d segmented RGB-D point cloud–color labels correspond to background, ground
plane (green), and interacting humans (red, blue); e reconstructed surface models and skeletons

5.3 Data Capture and Scene Representation

For the data capture, one or more moving humans are recorded by C = 3 individuals
(camera operators) that stand around the scene. Each of the operators holds a Kinect
camera and points it toward the center of the recording volume. They are free tomove
the cameras during recording. The performance capture method can handle a certain
amount ofmoving scene elements in the background. To improve the practicability of
the whole system, we rely on simple and convenient software synchronization since
hardware synchronization of multiple Kinects so far is not possible. Each Kinect
is connected to a notebook computer, and all recording notebooks are connected
through WiFi. One computer serves as a master that sends a start recording signal
to all other computers. The cameras are set to a frame rate of 30fps, and with the
software solution, the captured data of all cameras are frame-synchronized with at
most 10ms temporal difference.

Each Kinect captures a 640×480 video frame and an aligned depth frame at every
time step t , Fig. 5.1b, which yields a combined RGB-D point cloud. The intrinsics
of both the depth and the video cameras are calibrated off-line using a checkerboard
[38]. Depth and color data are aligned with each other using the OpenNI API [39].
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For each RGB-D point p, we store a triplet of values p = {x p, n p, l p}. Here, x p

is the 3D position of the point, n p is the local 3D normal, and l p is a RGB color
triplet. The normal orientations are found by PCA-based plane fitting to local 3D
point neighborhoods. Note that the 3D point locations are given with respect to
each camera’s local coordinate system. For performance capture, the points from
all cameras are required to be aligned into a global system. Since the Kinects are
allowed to move in our setting, the extrinsic camera parameters Λt

c (position and
orientation) of each Kinect c at every time step of video t , i.e., the combined extrinsic
set Λt = {Λt

c}C
c=1, need to be solved for. Fig. 5.1c shows the merged point set at

time t after solving for the extrinsics using the method later described in this chapter.
Also, due to occlusions in the scene and interference between several Kinects, 3D
points corresponding to some Kinect camera pixels cannot reliably be reconstructed.
The joint camera tracking and performance capture method thus need to be robust
against such missing measurements.

For each of the k = 1, . . . , K performers in the scene, a templatemodel is defined.
Similar to [12, 14], a templatemodel comprises a surfacemesh Mk with an embedded
kinematic bone skeleton (see Fig. 5.1e). A laser scanner is used to get a static surface
mesh of the person. Alternatively, image-based reconstruction methods could be
used or the mesh could be reconstructed from the aligned Kinect data [40–42]. The
surfacemodels are remeshed to have around Nk = 5, 000 vertices. Each vertex is also
assigned a color that can change over time, as described in Sect. 5.4.3. Henceforth,
the 3D positions of vertices of mesh k with attached colors at time t are denoted
by the set V t

k = {vt
k,i }Nk

i=1. To stabilize simultaneous 3D human shape and Kinect
position tracking, the ground plane is also explicitly modeled as a planar mesh V t

0
with circular boundary. The ground plane model has a fixed radius of 3m, and during
initialization, it is centered below the combined center of gravity of the humanmodels
(see Fig. 5.1d). In total, this yields a combined set of vertex positions V t = {{V t

k }K
k=0}

that need to be reconstructed at each time step. This excludes the groundplane vertices
as their position is fixed in world space. Its apparent motion is modeled by moving
the cameras.

A kinematic skeleton with n = 31◦ of freedom (DoFs) is manually placed into
each humanmesh, and surface skinning weighs are computed using a similar process
as [12, 14]. Skeleton poses χ t=(ξ t ,Θ t ) = (θ0ξ̂ , θ1, ..., θn) are parameterized using
the twist and exponential maps parameterizations [2, 12]. θ0ξ̂ is the twist for the
global rigid body transform of the skeleton, and Θ t is the vector of the remaining
angles. Using linear blend skinning, the configuration of a vertex of human mesh Mk

in skeleton pose χ t
k is then determined by

vi
(
χ t

k

) =
n∑

m=1

⎛

⎝wm
i

∏

j∈Parent (m)

exp
(
θ j ξ̂ j

)
⎞

⎠ vi . (5.1)

Here, wm
i is the skinning weight of vertex i with respect to the m-th DoF. Further

on, Parent (m) is the set of all the DoFs in the kinematic chain that influences
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the m-th DoF, i.e., all the parents of m-th DoF. In addition to Λt = {Λt
c}C

c=1, the
performance capture approach thus needs to solve for the joint parameters of all
persons at each time step, Xt = {χ t

k}K
k=1.

5.4 Human Performance Capture

Performance capture from 3D point data is only feasible if the RGB-D data from
all Kinects are correctly registered. In the beginning, for each time step, the cor-
rect extrinsics Λt are unknown. A traditional approach to track camera extrinsics
is structure from motion (SfM) performed on the background of the sequence [25].
However, in our multiple Kinect recording setting, the moving subjects fill most of
the visible area in each video frame and thus, a different approach has to be used.
In such a setting, human pose capture and camera pose estimation are performed
simultaneously, leading to more robust results. In other words, the optimization tries
to mutually align all point clouds and fit the poses of the actors to the RGB-D data. At
the same time, feature correspondences in the background are exploited similarly to
SfM, since they provide additional evidence for correct reconstruction. Camera and
body poses are therefore simultaneously computed, and the solution is regularized
to additional feature correspondences found in the video frame.

In the first frame of multi-view RGB-D video, camera extrinsics are initialized
interactively and the template models are fitted to each person’s depth map. The
initialization pose in the data sequence is guaranteed to be close to the scanned pose.
Thereafter, the algorithm runs in a frame-by-frame manner applying the processing
pipeline from Fig. 5.1c–e to each time step. For a time step t , the steps are as follows:
The Kinect RGB-D point clouds are first aligned according to the extrinsics Λt−1

from the previous frame. Starting with the pose parameters Xt−1 and resulting mesh
configurations and vertex colors from the previous frame, a matching algorithm is
introduced to match the Kinect point data to the model vertices. During this match-
ing, the RGB-D data are also implicitly segmented into classes for ground plane,
background, and one class for each person, Sect. 5.4.1 (Fig. 5.1d). Thereafter, a sec-
ond set of 3D correspondences is found by matching points from the ground plane
and the background via SIFT features, Sect. 5.4.1.

Based on these correspondences, Sect. 5.4.2 simultaneously solves for Kinect and
skeleton poses for the current frame. Correspondence finding and reconstruction are
iterated several times, and the model poses and point cloud alignments are contin-
uously updated (Fig. 5.1c). Non-rigid deformations of the human surface, e.g., due
to cloth deformation, are not explained by skeleton-driven deformation alone. In a
final step, the meshes Mk are thus non-rigidly deformed into the aligned point clouds
via Laplacian deformation and the vertex colors of the mesh model(s) are updated
(Fig. 5.1e). The following section explains each step in the algorithm for a specific
time t , and it omits the index t for legibility.
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(a) (b)

Fig. 5.2 Comparison of forward matching and inverse matching when Kinect data occlusion hap-
pens. The red points are Kinect data, and the black lines are model surface. The blue arrows and
green arrows are matching. a forward matching. Green matching are error correspondences. b
inverse matching

5.4.1 Point Data Correspondence and Labeling

The reconstructed 3D human models should matched to the RGB-D point clouds.
Therefore, an error function that measures the alignment of the RGB-D point clouds
with the 3D human models is minimized for finding the correct camera and body
configurations, Sect. 5.4.2. To evaluate this error, for all scene model vertices V ,
plausible correspondences to the RGB-D points P need to be defined. With these
correspondences, the alignment error can be evaluated, as it was also used in video-
based performance capture to measure alignment in the image domain [12].

Due to mutual occlusions, the Kinect point cloud P will not always sample every
part of the body surfaces. Additionally, interference between several Kinects renders
some 3D points unreliable. That is, in this scenario, matching model vertices V to
Kinect point clouds P tends to be unstable. Also, the matching term should ensure
that each 3D human template is explained by the point data. Therefore, as shown
in Fig. 5.2, reverse matching is much more robust since all the foreground points
physically exist and, in theory, can all be explained by the model surface, although
there is noise and outliers in the captured data. Thus, the closest mesh vertices for
all RGB-D points are proposed as matches.

Here, we define the metric F for the searching of a model vertex v to a given 3D
point p. Such metric simultaneously measures the color distance and a geometric
distance as follows:



98 Y. Liu et al.

F (v, p) = Δ
(∥∥lv − l p

∥∥ , θl
)
Δ

(∥∥xv − x p
∥∥ , θx

)
max

(
nvn p, 0

)
(5.2)

where
Δ(x, θ) = max

(
1 − x

θ
, 0

)
(5.3)

Here, x p, l p, n p and xv, lv, nv denote the position, color, and normal of a Kinect
point and a mesh vertex, respectively. The first part in F is a color term enforces
color similarity between the mesh vertex and the corresponding Kinect point, with
the maximum color difference θl is experimentally set to 100. The second part in F
is a geometry term, and it only matches RGB-D points and vertices that are spatially
close and have similar normal orientation. The maximum distance a mesh vertex is
allowed to move θx is also experimentally set to 100mm.

Based on F , we first select the points corresponding to the persons and the ground
plane as:

Zk
V =

{
(v, p) |v = argmax

v
F (v, p) , F (v, p) > 0, v ∈ Mk

}
(5.4)

and

ZG =
{
(v, p) |v = argmax

v
F (v, p) , F (v, p) > 0, v ∈ V0

}
. (5.5)

For each point p, the vertex v is first selected from V to maximize F . If the maximum
F > 0, according to the label of v, the correspondence (p, v) is classified into a person
correspondence set Zk

V of person k, or into the ground plane correspondence set ZG .
After the correspondences ZV = {Zk

V }K
k=1 and ZG are established, the RGB-D point

cloud is thus implicitly segmented into one class for each person, ground plane, and
background for all RGB-D points that were not assigned a corresponding point in V .

As stated in the beginning, the reconstruction error is also based on feature cor-
respondences in the scene background, similar to classical structure-from-motion
approaches. The method from Sect. 5.4.1 provides a classification of background
RGB-D points and thus corresponding RGB pixels in each Kinect video image.
SIFT features are detected on the background regions of the RGB images from
t − 1 and t and then converted into 3D correspondences ZS = {(p′, p)} | p′ ∈
Pt−1, p ∈ Pt , (p′, p) matched via SIFT} through the available depth. As stated ear-
lier, background correspondences are not always fully reliable. Measurement accu-
racy decreases with increasing distance from the camera, and moving objects in the
background lead to erroneous correspondences. Thus, the error function additionally
measures point-to-model correspondences in the foreground. Fig. 5.3b shows that
alignment based on SIFT features in the background alone will not suffice.
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Fig. 5.3 Comparison of RGB-D point data fusion at frame t before and after joint skeleton and
Kinect optimization. a Fusion using extrinsics from the former time.bFusion based onSIFT features
alone fails. c Fusion using extrinsics solved by the combined human and camera pose optimization
produces much better results

5.4.2 Joint Skeleton and Kinect Tracking

After the computing of correspondence sets ZV , ZG , and ZS , a geometric error
function can be defined and minimized in the space of skeleton pose X and camera
extrinsics Λ:

E (X, Λ) = argmin
X,Λ

⎧
⎨

⎩

∑

(p,v)∈ZS

‖p (Λ) − v (X)‖2
‖ZV ‖ +

∑

(p,v)∈ZG

‖p (Λ) − v‖2
‖ZG‖ +

∑

(p,p′)∈ZS

∥∥p (Λ) − p′∥∥2

‖ZS‖

⎫
⎬

⎭

(5.6)

Here, ||Z || is the number of elements in set Z . This function is solved through lin-
earization within an iterative quasi-Newtonminimization. Using Taylor expansion of
the exponential map, the transformation ofΛ on point p leads to a linear formulation

p(Λ) = Rp + T = eθ ξ̂ p ≈
(

I + θ ξ̂
)

p (5.7)

For the body pose, we can perform the similar expansion. Specifically, Eq. (5.1) can
be linearized as

v (X) =
⎛

⎝I + θ0ξ̂0 +
n∑

m=1

⎛

⎝
∑

j∈Children(m)

w j

⎞

⎠ θm ξ̂m

⎞

⎠ v, (5.8)

where, Children(m) is the set of DoFs corresponding to the children DoFs of the
m-th DoF.

Robust correspondence finding and pose optimization are iterated for 20 times.
After each iteration, the normals of the fused point cloud points n p are updated.
Fig. 5.3 shows the comparison of the fused data before pose optimization (a) and
after pose optimization (c). Please note that even using state-of-the-art techniques,
direct fusion of the point data without the aid of a 3Dmodel is extremely difficult and
error prone because of the small overlap region between the different Kinects [43].
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5.4.3 Surface Geometry Optimization

After tracking and skinned deformation of the skeleton-driven model of each
character, mesh deformation is performed to refine the surface geometry of the per-
formers and capture non-rigid deformation effects, such as cloth motion. Similar to
[8], for each person k, surface deformation is formulated as:

argmin
v

{‖Lv − δ‖22 + ‖Cv − p‖22} (5.9)

Here, v denotes the vector of vertices on human body mesh Mk . L is the discrete
Laplace operator, and δ is the differential coordinates of the current mesh vertices.
The Laplace operator is defined as [44]

L =
⎧
⎨

⎩

di i = j
−1 (i, j) ∈ E
0 otherwise

(5.10)

and δ is usually defined as

δi = 1

di

∑

j∈N (i)

(
vi − v j

)
. (5.11)

Here, (i, j) ∈ E means vertex vi and v j are on the same edge and di is the number of
neighbor vertices of vi . The definition of δ is upgraded to cotangent weights in this
work, please refer to [44] for detail. In (5.9), C is a diagonal matrix with nonzero
entries c j j = α (α=0.1) for vertices in correspondence set Zk

pv. p is the vector with

nonzero position entries for those p in Zk
V .

After non-rigid mesh deformation, the color of each vertex is updated according
to a linear interpolation between the previous color and the current color using

lv = t

t + 1
lv + 1

t + 1
lnn (5.12)

where lnn is the color of the nearest RGB-D neighbor point of v.

5.5 Experimental Results

This section verifies the performance capture system from both the perspectives
of qualitative analysis and quantitative evaluations. The data were recorded with
three moving Kinects at a resolution of 640 × 480 pixels and at a frame rate of
30fps. The sequence is consisted of a wide range of different motions, including
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Fig. 5.4 Performance capture results on a variety of sequences: one of the input image, layered
geometry, reconstructed geometry, and skeleton. Each row shows two results

dancing, fighting, and jumping, see Fig. 5.4, and accompanying video.2 The motions
were performed by five different persons wearing casual clothing. There are also
two evaluation sequences where the performer was simultaneously tracked by a
multi-view video system and also three evaluation sequences where one of the two
human actors is wearing a marker suit for simultaneous optical motion capture. The
configurations of the acquisition setups for all these sequences are shown inTable 5.1.

5.5.1 Qualitative Evaluation

Figure 5.4 shows several results produced by the system. The approach enables fully
automatic reconstruction of skeletal pose and shape of two persons, even if they are
as closely interacting as in martial arts fight, hug, or while dancing, see Fig. 5.4
and the accompanying video. Despite notable noise in the captured depth maps, the
method successfully captures pose and deforming surface geometry of persons in

2 The accompanying video is available at: www.media.au.tsinghua.edu.cn/kinectfvv.mp4.

www.media.au.tsinghua.edu.cn/kinectfvv.mp4
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Table 5.1 Description of the capture sequences

Sequence Frame Number of Number of Number of Kinect Comparison

rate performers (K ) Kinects (C) frames status

Dancing walk 30 1 3 300 Moving No

Kungfu 30 1 3 300 Moving No

Couple dance 30 2 3 300 Moving No

Fight 30 2 3 300 Moving No

Hug 30 2 3 250 Moving No

Arm crossing 30 1 3 400 Static No

Rolling 15 1 3 200 Static Multi-view Video

Jump 15 1 3 200 Static Multi-view Video

Exercise1 30 1 3 450 Static Marker based

Exercise2 30 1 3 450 Moving Marker based

Exercise3 30 2 3 450 Moving Marker based

loose apparel. With a capturing frame rate of only 30fps, the introduced approach
can also handle very fast motions, see the jump and kicking motions in Fig. 5.4.

5.5.2 Comparison to Vision-Based Motion Capture

To compare against a vision-based motion capture system, two sequences are cap-
tured in a multi-view video studio with 10 calibrated cameras (15fps, 1024 × 768)
and a green screen in the background. The Kinect data were temporally aligned to the
multi-view video data at frame-level accuracy using event synchronization. Although
the synchronization of the video camera system and the Kinect system is not guar-
anteed at subframe accuracy, the evaluation of the difference between the two results
still presents a conservative performance evaluation of the proposed algorithm.

Since the multi-view video system runs at 15fps, a sequence “rolling” is cap-
tured with slow motion and a sequence “jump” with fast motion. The Kinect system
runs at 30fps, so the frames from the multiple Kinect system are subsampled by
factor two and compared to the performance captured with multi-view video-based
tracking (MVT) [12]. Figure 5.5 visually demonstrates the results of the two sys-
tems on the basis of four frames selected at regular equidistant intervals from the
“rolling” sequence. Since the MVT requires a green screen for clean background
subtraction and it, thus, does not work with extra camera operators in the scene
background, the three Kinects are fixed in the MVT studio during data capture. With
these fixed Kinects, the introduced algorithm can be validated by comparing the opti-
mized Kinect extrinsics in the later frames with those of the first frame. The average
distance from the Kinect center in the first frame to the Kinect center of other frames
(both “rolling” and “jump”) for each of the Kinects are 10.66mm, 7.28mm and
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Fig. 5.5 Comparison with multi-view video-based tracking (MVT) approach on the “rolling”
sequence. The top left are four input images of the multi-view video sequence. The top right
shows the close overlap of the two skeletons tracked with MVT (blue) and the multiple Kinect-
based approach (red). The bottom left is the reconstructed surface with the skeleton using MVT,
and the bottom right is the results from the multiple Kinect-based approach. Quantitative and visual
comparisons show that MVT-based and Kinect-based reconstructions are very similar

Fig. 5.6 Comparison with multi-view video-based tracking (MVT) approach on the “jump”
sequence. The left three and the right three are input image, result of MVT, and result of the
Kinect-based approach. On this fast motion, Kinect-based tracking succeeds, while MVT fails to
capture the arm motion

6.67mm, respectively. For the slow motion sequence “rolling”, the result from the
multiple Kinect system closely matches the input images and the result of the MVT
system, see Fig. 5.5. In addition, the differences on the joint centers of these results
from the two systems are computed. The average distance between the corresponding
joint positions across all 200 frames of the sequence is 21.42 mm with a standard
deviation of 27.49mm. This distance also includes the synchronization differences
between the two systems. For the fast motion sequences, the MVT even fails despite
a much higher number of cameras, while the Kinect-based tracking is able to track
the whole sequence, see Fig. 5.6.

5.5.3 Comparison to Marker-Based Motion Capture

Most of the commercial motion capture systems apply marker-based techniques
since they provide comparably robust and accurate performance. In this chapter, a
quantitative evaluation on the accuracy of simultaneous skeleton motion capture and
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Fig. 5.7 The capturing environment with the OptiTrack motion capture system a and comparison
between this marker-based Mocap system and our algorithm b. Red dots represent the ground truth
marker position and the green dots are their corresponding vertice on the body model. The distance
between them is evaluated

geometry reconstruction with the proposed system against a marker-based system
is conducted. One sample image showing the capturing environment of the marker
system is provided in Fig. 5.7a. In our setting, OptiTrack marker-based motion cap-
ture system [45] is adopted for comparison. Besides three handheld Kinects in the
capture environment, 34 optical markers were attached to one of the persons, whose
motions were captured with the marker-based system. Since it is impossible to syn-
chronize the two systems, both of the two systems run at 30fps and the start frames
are manually aligned. The synchronization error is then within 1/30 s.

The error metric is defined as the average distance between the markers and their
corresponding vertices on the template model across all the frames of the sequence.
The corresponding vertices are found in the first frame when the markers and the
3D model template is well aligned. The error metric not only accounts for the per-
formance of skeleton tracking, but also the accuracy of the geometry reconstruction.
Figure 5.7b and the accompany video show the ground truth marker positions and
their corresponding vertices on the recovered models. Our experiments show that
the multiple Kinect-based system produces reasonable and similar tracking perfor-
mances as the marker system. In cases of occlusions between two persons, the track-
ing result is also robust and accurate. Quantitative evaluations are also performed,
as shown in Fig. 5.8. The average distance and the standard derivations of the dis-
tance between each marker and their corresponding vertices on the 3D model are
calculated. The results are shown in Fig. 5.8. The average error between the two
systems is about 38mm. Considering that the two systems are not strictly synchro-
nized, this geometry accuracy is plausible. Compared with available single depth
camera-based motion capture systems such as Ganapathi et al. [33], which report
an average tracking error about 200mm, the multiple Kinect-based system provides
much lower tracking errors. This improvement is achieved through the combination
of multiple depth cameras and the delicate algorithm design. From the quantitative
evaluation on “Exercise 1”(static cameras) and “Exercise 2”(handheld cameras), it
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Fig. 5.8 The quantitative comparison of the Kinect-based tracking accuracy with the marker-based
result (ground truth). The blue bars and pink bars show the accuracy and standard derivations (std)
with three Kinects and two Kinects, respectively

is also interesting to note that, compared with static capture, handheld capture does
not obviously damage system performance.

All the experiments discussed above are implemented with three Kinect cameras.
To verify the robustness of the multiple Kinect-based system, the number of cameras
is decreased to show how the final results are affected by the number of Kinects. The
accuracy achieved with two Kinects is shown with the pink bars in Fig. 5.8. This
shows that the accuracy obtained with two Kinects and three Kinects is very similar
for one body tracking (for “Exercise 1” and “Exercise 2”). However, the accuracy
decreases significantly by using two cameras for the “Exercise 3.” This is because
in “Exercise 3,” occlusion between the two persons is more serious. Using only two
cameras could not sufficiently capture the whole scenario and therefore results in a
relatively low tracking quality.

5.6 Discussion

Interference: Currently, multiple Kinects aiming at the same scene may introduce
interferences between each other and degrade the depth quality. In our case, the
Kinects are very sparse with any of the two Kinects covering a viewing angle of
about 120◦. Such a baseline with such a large angle causes only about 10% of the
whole pixels surfers interference for a camera in the experiments, compared with the
case of single Kinect. Moreover, the Kinect will not return depth values for pixels
with interference, so interferencewill not produce erroneous 3Dpoint data to degrade
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the tracking accuracy. To adapt for more Kinects working together, multiple depth
sensors may share the same lighting source to infer depth information while reducing
interference.

Complexity: Computational complexity does not starkly depend on the number of
subjects in the scene. It takes about 10 s for single person tracking of a frame and 12 s
for the two persons tracking on a standard PC using unoptimized code. The system
uses local optimization, and the run time of the systemmainly depends on the number
of captured points. The number of captured points decides the time complexity of
both correspondence establishment and the pose estimation. The correspondence
establishment takes more than half of the total time and could be optimized using
more efficient data structures, like octrees, to decrease the searching number of
matching vertices to speed up the search. Real-time tracking is possible with code
optimization and parallel computing.

Alternative Optimization Approach: Since the method introduced is based on
local optimization, the trackingmay fail when serious occlusions happen or when the
motion is too fast.Alternatively, a global optimization approach [12] can be employed
based on the local optimization results, similar to themethod proposed formulti-view
video-based tracking. Such global optimization is, for instance, based on analysis by
synthesis, that is, sampling on the skeleton and camera pose space and retrieving the
one that best matched to the input data in a particle swarm optimization (PSO) [46] or
interacting simulated annealing (ISA) [21] optimization. Theoretically, the tracking
results will be comparably more robust than local optimization approach; however,
the computation complexity is greatly increased and the temporal smoothness of the
tracking results will be degraded.

5.7 Conclusions

This chapter introduces amethod for human performance capture using several hand-
held Kinects. The method adopts a local optimization approach to simultaneously
solve for the skeleton parameters and camera pose by driving them to fit to the
input point data from the Kinects. The tracking approach is based on iterating robust
matching of the tracked 3D models and the input Kinect data and a quasi-Newton
optimization onKinect poses and skeleton poses. This joint optimization enables us to
reliably and accurately capture shape and pose of multiple performers. In summary,
the proposed technique removes the common constraint in traditional multi-view
motion capture systems that cameras have to be static and scenes need to be filmed
in controlled studio settings. Instead, the introduced system allows users to hold the
Kinects for motion capture and 3D reconstruction of performers. This enriches the
practical application, especially when considering the anticipated introduction of
depth cameras in consumer devices like tablets.
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