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Abstract

Occlusions between human and objects, especially for
the activities of human-object interactions, are very com-
mon in practical applications. However, most of the exist-
ing approaches for 3D human shape and pose estimation
require human bodies are well captured without occlusions
or with minor self-occlusions. In this paper, we focus on
the problem of directly estimating the object-occluded hu-
man shape and pose from single color images. Our key
idea is to utilize a partial UV map to represent an object-
occluded human body, and the full 3D human shape esti-
mation is ultimately converted as an image inpainting prob-
lem. We propose a novel two-branch network architecture
to train an end-to-end regressor via the latent feature su-
pervision, which also includes a novel saliency map sub-
net to extract the human information from object-occluded
color images. To supervise the network training, we fur-
ther build a novel dataset named as 3DOH50K. Several ex-
periments are conducted to reveal the effectiveness of the
proposed method. Experimental results demonstrate that
the proposed method achieves the state-of-the-art compar-
ing with previous methods. The dataset, codes are publicly
available at https://www.yangangwang.com.

1. Introduction
3D human shape and pose estimation from color images

attracts lots of research interests in the area of computer vi-

sion. It may promote several promising virtual reality ap-

plications, such as body shape animation, shape retarget-

ing, motion mimic and etc. Conventionally, the full 3D hu-

man body shape estimation has experienced from complex

hardware (e.g., multi-view cameras, IMU sensors) to sin-

gle devices (e.g., color camera, Kinect). In recent years,

deep learning based techniques [17, 33, 51] have witnessed

the rapid progress of recovering the full body human shape

from single color images, though most of the existing ap-

proaches are addressed for the scenarios that human bod-
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Figure 1. Our method performs well for the human shape and pose

estimation from single object-occluded color images.

ies are well captured without occlusions or with minor self-

occlusions. However, occlusions between human and ob-

jects, especially for the activities of human-object interac-

tions, are very common in practical applications. It is hard

to achieve good performance for recovering the full 3D hu-

man body shape from object-occluded color images when

the occlusions are not explicitly taken into account. In this

paper, we mainly focus on the problem of estimating the

object-occluded full 3D human shape and pose from single

color images.

Historically, 3D human shape and pose estimation from

single color images is flourished after the Skinned Multi-

Person Linear model (SMPL) [27] has been presented. It

goes through several stages, including SMPL parameters

optimization via fitting to 2D visual cues [3, 21], directly

regressing the SMPL parameters with Convolutional Neural

Network (CNN) [33, 30], volumetric representation for 3D

human shape [15, 43], and 2D UV map representation for

the human body geometry surface [51, 54]. Although deep

learning has become the mainstream of full 3D human body

estimation due to its accuracy and runtime efficiency, it can-

not be directly shifted to handle the object-occluded human

body estimation without explicitly considering occlusions.

There are two main challenges. The first one is that there is

a lack of sufficient data for the network training. Existing

datasets are not originally designed for the occluded human

shape estimation. The other one is object-occlusions would

introduce severe ambiguities into the network training, and



thus confuse the full 3D human body shape estimation.

To tackle the obstacles, we investigate different hu-

man body representations and take the up-to-date 2D UV

map [6, 51] to describe the 3D human shape. Even so, it is

still hard to directly regress the full 2D UV map via CNN

due to the ambiguities caused by occlusions. Our key idea

is to utilize a partial UV map to describe an object-occluded

human body and convert the full 3D human shape estima-
tion as a UV map inpainting problem, as shown in Fig.2.

We propose a novel two-branch encoder-decoder network

architecture, where the first branch is a UV map inpaint-

ing and the second branch keeps an input color image to

be consistent with its partial UV map in their latent feature

spaces. Both of the two branches share the same decoder,

and they are trained separately with different datasets. Typ-

ically, the UV map inpainting branch, which could be re-

garded as a prior for body shapes, can be trained without

color images. It is also worth noting that the pixels in color

images that are not part of bodies may fool the color image

encoder, we then introduce a saliency map estimation sub-

network to emphasize the importance of human pixels in

color images as shown in Fig.2 (b). Although the proposed

network focuses on the object-occluded human shape esti-

mation, it does not affect the performance of non-occluded

human shape estimation and also achieves the state-of-the-

art, as shown in Sec.5.

Our network can be run efficiently both for training and

inference. At the training stage, a two-step training strat-

egy is adopted to optimize the network parameters. We first

train the UV map inpainting branch, and then its parame-

ters are fixed to supervise the training of the color image

encoder (Fig.2 (c) and (d)). At the inference stage, a sin-

gle color image is passed through the saliency map sub-

network, the color image encoder, and the decoder of UV

map inpainting branch. However, to train the proposed net-

work, we found that human-object occlusion datasets are

far from sufficient. We first added virtual objects into ex-

isting datasets (e.g., Human3.6M [13]) to synthesize occlu-

sions. To further facilitate the network training, we build

a new dataset named as 3DOH50K. The new dataset con-

tains more than 51600 images, where all images were cap-

tured from real scenes with 6 viewpoints, and we used the

modified SMPLify-X[32] to fit the SMPL model. Finally,

each instance has an accurate 2D pose, a 3D pose, SMPL

parameters, and a binary mask. To the best of our knowl-

edge, 3DOH50K is the first real dataset for the problem of

human-object occlusion. The proposed dataset could pro-

vide a new challenge benchmark for human reconstruction

and pose estimation in occlusion scenarios.

The main contributions of this work are summarized as

follows.

• We take a partial UV map representation for an object-

occluded 3D human body, and describe the full 3D hu-

man shape and pose estimation as an image inpainting

problem.

• We propose a novel two-branch network architecture

to train an end-to-end human shape regressor for esti-

mating the full 3D human shape and pose from single

color images.

• We build a novel object-occluded human dataset,

which is named as 3DOH50K, to ease the network

training. The dataset, codes are publicly available

at https://www.yangangwang.com.

2. Related Work
Human pose and shape estimation. Traditional human

pose and shape estimation methods mostly use the com-

plex hardware to obtain the human body’s cues, and esti-

mate the full 3D human body pose and shape through iter-

ative optimization[12, 45, 23] or deep learning[41, 2, 25].

Due to various limitations of hardware, they cannot be eas-

ily applied to real-world scenarios. In order to accurately

estimate the pose and shape of the human body from sin-

gle RGB camera, [17, 30, 33, 55] parameterized the mesh

in terms of 3D joint angles and a low dimensional linear

shape space. Unlike the previous methods[48, 3], they di-

rectly infer 3D mesh parameters from image features which

avoided two stage training and also avoided throwing away

lots of image information. In order to avoid complex non-

linear mapping of parameter prediction methods, Venkat et
al. [44] proposed HumanMeshNet that regressed a template

mesh’s vertices. Some recent works[51, 1, 22] turned a hard

3D inference problem into an image-to-image translation

which is amenable to CNNs by encoding appearance and

geometry layout on a common SMPL UV-space.

Occlusion. Huang et al. [11] presented a method capable

of recovering 3D human pose when a person is partially

or heavily occluded in the scene from monocular images.

However, the occlusions are limited to two rectangles. [36]

presented a systematic study of various types of synthetic

occlusions in 3D human pose estimation from a single RGB

image. Since synthetic data can not fully depict the real oc-

clusion, Girshick et al. [8] learned from real data and used

grammar models with explicit occluding templates to rea-

son about occluded people. To avoid specific design for

occlusion patterns, [7] presented a method for modeling oc-

clusion that was aimed at explicitly learning the appearance

and statistics of occlusion patterns. [34] integrated depth

information about occluded objects into 3D pose estima-

tion framework. In the scope of face de-occlusion, [42]

tried to address the problem of detailed face reconstruc-

tion from occluded images. [53] proposed a novel deep

face de-occlusion framework, which can handle face im-

ages under challenging conditions. In [46], a very effective

occluded face recognition algorithm, GD-HASLR, was pro-

posed. It has strong robustness to the shape and the size of
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Figure 2. Overview of the proposed two-branch network. At the training stage, UV map inpainting branch (a) is trained at first. Then,

the occluded color image is concatenated with its saliency map (b) and fed to color image encoder (c). The corresponding partial UV map

is encoded by fixed inpainting network and used for supervising the color image encoder in latent space (d). At the inference stage, a single

color image is passed through the saliency map sub-net (b) and the occluded human reconstruction sub-net (c). The output mesh is directly

re-sampled from the UV position map.

the occlusion object. Due to the fact that a human visual

system explicitly ignores occlusions and only focuses on

non-occluded areas, [39] proposed an occlusion robust face

recognition approach with the pairwise differential siamese

network (PDSN) that explicitly build the correspondence

between occluded facial blocks and corrupted feature ele-

ments.

Image Inpainting. Pathak et al. [31] proposed Context

Encoders – the first work applies deep neural networks for

image inpainting. It consists of an encoder capturing the

context of an image into a compact latent feature repre-

sentation and a decoder which uses that representation to

produce the missing image content. [40] promoted this

task with dividing it into inference and translation as two

separate steps and each step with a deep neural network.

Xiong et al. [47] learned to predict the foreground contour

first, and then inpainted the missing region using the pre-

dicted contour as guidance. [52] proposed a new deep gen-

erative model-based approach which can not only synthe-

size novel image structures but also explicitly utilized sur-

rounding image features as references during network train-

ing to make better predictions. [50] proposed a multi-scale

neural patch synthesis approach based on joint optimization

of image content and texture constraints, which preserves

contextual structures and produces high-frequency details

by matching and adapting patches with the most similar

mid-layer feature correlations of a deep classification net-

work. [49] proposed Shift-Net, which inherits the advan-

tages of exemplar-based and CNN-based methods, and can

produce inpainting result with both plausible semantics and

fine detailed textures.

3. Method
An overview of the proposed method is shown in Fig.2.

We use a partial UV map to represent the object-occluded

human body, and human shape estimation is finally formu-

lated as a UV map inpainting problem.

3.1. Object-Occluded Human Representation

We use the representation of 3-channel UV position

map [6] to describe a human body for network training. The

RGB values in a UV position map record 3D positions of a

body mesh, where the map encodes the geometry topology

of body surface. Based on the UV position map, we fur-

ther promote a representation of 3D object-occluded human

shapes. In our method, UV coordinates of all mesh vertices

are provided by SMPL [27].

Fig.3 shows how we generate a partial UV position map

from a body mesh and a segmentation mask. We project the

body mesh into the image plane by a weak perspective pro-

jection. The projected points that are outside the segmen-

tation mask are regarded as occluded vertices. Otherwise,
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Figure 3. The Representation of Object-Occluded Human. Given an occluded human image (a) and the corresponding occlusion

segmentation (b), we render the fitted human body model onto the 2D image plane (c). For the visible part, we store the normalized x, y, z
coordinates of the vertices as r, g, b color values in the UV map. For the occlusion part, we set the r, g, b values of the UV map to −0.5 (e).

positions of visible vertices are normalized into a range of

−0.5 to 0.5, and their x, y, z coordinates are stored as 3-

channel (RGB) values in the UV map. For occluded parts,

we set the values of the UV map as [−0.5,−0.5,−0.5]. Par-

tial UV position map can accurately represent the object-

occluded mesh. It should be noted that our partial UV map

only considers the object-occlusion. For self-occlusion,

[51, 1, 44] have proved that it can be easily estimated

through the visible part of the body and the part of self-

occlusion is encoded as the supervision in latent space. No-

tice that the output mesh can be re-sampled from a complete

UV position map.

3.2. UV Map Inpainting Sub-Network

Estimating a full UV map from a partial UV map is

an image-to-image translation problem [14]. As shown in

Fig.2 (b), the process of partial-to-full is not affected by

the background of the occluded color images. Thus, we

can synthesize occlusions to train an inpainting network,

which is robust to various types of occlusions. We follow

the work [36] to perform the synthetic occlusion data syn-

thesis on the Human3.6M dataset.

We use an encoder-decoder structure to train the UV

map inpainting sub-network and our loss function has three

terms

L = L1 + λLtv + μLp, (1)

which is a little different from [51].

The first term L1 performs the supervision between pre-

dicted UV maps and ground-truth UV maps, which is,

L1 =

H∑

j=1

W∑

i=1

βi,j

(∣∣Pi,j − P gt
i,j

∣∣) , (2)

where βi,j is a weight mask and the weight is inversely pro-

portional to the part area. W and H are the width and height

respectively. P is the pixel RGB value.

The second term Ltv ensures the smoothness among

each body parts, which has the form,

Ltv =
∑

k

∑

(i,j)∈Rk

(|Pi+1,j − Pi,j |+ |Pi,j+1 − Pi,j |) ,

(3)

where Rk is defined as the kth body part.

Since Ltv only guarantees the smoothness in the same

part, it cannot guarantee the body connection part smooth.

We then propose a third term named as part loss, which is

Lp =
∑

vi∈Vb

∣∣P (vi)− pgti
∣∣ , (4)

where Vb is a set of vertices that have multiple UV coor-

dinates. P̄ (vi) means the average RGB value of UV coor-

dinates corresponding to vertex vi. pgti is the ground truth

position of vertex vi.

3.3. Saliency Map Estimation Sub-Network

To reduce the influences of invalid information such as

background and occlusion for human shape and pose recov-

ery, we introduce a sub-network to estimate human saliency

map as shown in Fig.4. We use different scales of masks

as intermediate supervision. The proposed saliency map,

which can be treated as a representation of visual attention,

is not an accurate segmentation. Even the state-of-the-art

instance segmentation methods[9, 24] are hard to give the

correct segmentation in the case of occlusion. However,

the imperfect saliency map is good enough to reduce the

influence of background and avoid extra cropping opera-

tion required by previous methods [17, 19, 20]. In Sec 5,

we compare the results with and without saliency map to

demonstrate the effectiveness of saliency map.

3.4. Latent Feature Supervision

For the UV map inpainting task, we assume that high di-

mensional features in the encoder part have a certain degree

of prior knowledge for human body shapes. This drives us

to utilize the high dimensional features extracted from the
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Figure 4. Overview of saliency map estimation Sub-Network. We propose a sub-network to estimate human saliency map which aims

to reduce invalid information such as background and occlusion. We use different scales of masks as intermediate supervision.
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Figure 5. Samples of the 3DOH50K. Each image in our dataset

includes segmentation, 2D and 3D skeleton keypoints annotation

and SMPL parameters.

UV map inpainting branch to supervise the training of color

image encoder (Fig.2 (d)). We found that using UV map

high dimensional features as constraint could accelerate the

convergence speed of training and is more accurate than di-

rectly predicting full UV position maps from color images

as shown in the experiment section.

4. 3D Occlusion Human Dataset

Most of existing 3D human datasets e.g., [13, 37] fo-

cus on the complexity and diversity of poses. Nevertheless,

they often overlook the occlusions generated by the interac-

tions between the human and objects, which are common-

places in the real world. Therefore, human pose and shape

estimation methods trained on such datasets are sensitive

to occlusions. To solve this challenging problem, we pro-

pose our dataset 3D Occlusion Human 50K(3DOH50K).
It contains 51600 images, most of which are human activ-

ities in occlusion scenarios. Fig.5 shows some examples.

All images are captured from real scenes with six views.

3DOH50K is the first real 3D human dataset for the prob-

lem of occlusion. Our dataset could provide a new chal-

lenge benchmark for human reconstruction and pose esti-

mation in occlusion scenarios.

4.1. Annotations

Obtaining accurate annotations in occluded scenes is ex-

tremely difficult. We tried a variety of the state-of-the-art

instance segmentation and pose estimation methods[9, 24,

5, 4]. It turns out that all of them do not achieve the de-

sired results. Therefore, for each image, we first use Mask-

RCNN[9] and Alphapose[5] to automatically segment the

mask and estimate the 2D keypoints. For the inaccurate

parts, we manually corrected the mask and keypoints. Then,

we fit the SMPL model with annotated keypoints by using

SMPLify-X[32] in a multi-view strategy:

E(β, θ, T ) =EJ + λθbEθb + λαEα + λβEβ (5)

where Eθb , Eα and Eβ are same as [32]. For the data term

EJ we use 6-views re-projections to constrain the SMPL

model:

EJ (β, θ, T ;K, Jest) =∑

viewj

∑

jointi

wj,iρ
(
ΠKj (Rθ (J(β)i) + T )− Jest,j,i

) (6)

Finally, 3DOH50K has camera parameters of 6 views.

Each image has an accurate 2D pose and 3D pose, SMPL

parameters, and a binary mask.

4.2. Dataset Statistics

We compare different public datasets related to 3D pose

estimation in Tab.1. Although existing datasets have high-

quality annotations and a large amount of data, they hardly

contain examples with occlusions. There are some oc-

clusion sequences in CMU Panoptic[16] and 3DPW[45],

but they have a similar pose for the entire occlusion se-

quence.(e.g., in the subset of Musical Instruments in CMU

Panoptic Dataset, the instrument produces a large propor-

tion of occlusion, but the pose and occlusion in the entire

sequence are similar.) There is also a small amount of oc-

cluded samples in UP-3D dataset. However, since it is fitted

through a monocular method [3], the depth information of

ground truth is not processed well. [29] provides accurate



Dataset Occlusion Data Real Data 2D Pose 3D Pose Occlusion Seg. Mesh Camera Param.

CMU Panoptic[16] ++ � � � – � �
3DPW[45] ++ � � � – � �
Human3.6M[13] – � � � – – �
UP-3D[21] + � � � – � –

MPI-INF-3DHP[29] + � � � � – �
3DOH50K (ours) ++++ � � � � � �

Table 1. Comparison among different public datasets related to 3D pose estimation. Occlusion data refers to the object-occluded data and

+ denotes the amount of occluded samples.

occlusion segmentation, however it only contains very few

types of occlusion. These shortcomings of existing datasets

lead to their inability to perform 3D pose and shape estima-

tion in occlusion situations.

5. Experiments
5.1. Datasets

Human3.6M [13] is one of the most widely used 3D

human datasets. It has 11 subjects, 15 kinds of action se-

quences and 1.5 million training images with accurate 3D

annotations. Since Human3.6M dataset has no object oc-

clusion, we adopt the method of [36] to add a synthetic
occlusion on the image, an example is shown in Fig. 6 (row

3 right). Similar to [17], we use MoSH[26] to process the

marker data in the original dataset, and obtain the ground

truth SMPL parameters. For a fair comparison, we use

300K data in S1, S5, S6, S7, S8 for network training, and

test in S9, S11.

3DOH50K is the first 3D human occlusion dataset pro-

posed by us. It contains 50310 training images and 1290
test images. It provides 2D, 3D annotations and SMPL pa-

rameters for generating meshes. Detailed information has

been provided in Sec 4.2.

3DPW [45] is captured via IMUs and contains both in-

door and outdoor scenes. It provides accurate SMPL pa-

rameters and calibrated camera parameters. However, the

occluded samples in the dataset are few and not represen-

tative. In order to demonstrate the effectiveness of our ap-

proach, we selected the occluded sequences from the entire

dataset as a new testset. The names of these sequences are

provided in the Supplementary Material.

5.2. Implementation Details

The U-Net structure [35] is adopted for Saliency Map

Estimation and the model is supervised using the segmenta-

tion of human. In order to reduce the redundant latent fea-

tures and make it easier to be consistent, a modified ResNet-

18 [10] and VGG-19 [38] are respectively used as encoder

for partial UV maps and color images. The decoder part is

simply composed of 6 consequent up-sampling and convo-

lutional layers. The size of UV maps and color images in

this work are all scaled to 256 × 256. To generate ground-

truth UV position maps, we transform all meshes into the

same normalized camera coordinate frame by weak per-

spective projection. For testing, SMPL fitting is performed

to estimate SMPL parameters for quantitative comparison

among different algorithms. Non-optimized L-BFGS algo-

rithm is adopted for fitting, which takes about 30s. Since

most of UV maps and saliency maps have zero values re-

gions, we use leaky-ReLu[28] instead of ReLu. We use the

Adam optimizer[18] with a batch-size of 10 and the initial

learning rate set to 1e-3. Running time of our work with a

2080Ti GPU is 13ms per image, which is effectively real-

time.

5.3. Quantitative Evaluation and Comparison

To demonstrate the effectiveness of our method, we

performed quantitative evaluations on Human3.6M, 3DPW

and 3DOH50K. Numerous comparisons are conducted with

the state-of-the-art methods. It is noted that previous works

do not specifically target the object-occluded problem, we

retested their released model on the occlusion dataset. Fig.6

and Fig.7 present some results and more detailed compar-

isons are described in the following.

We first tested our method on S9 and S11 of the original

Human3.6M, verifying that our method can also achieve the

state-of-art performance without occlusions. The 3rd col-

umn in Tab.2 shows the performance of our approach on

the origin Human3.6M dataset. Our method can obtain the

very similar results as the recent work [19].

Then, we compared our method on those occlusion

datasets. On Synthetic Occlusion Human3.6M, we com-

pared ours with the methods generating human meshes

(based on SMPL model). Detailed results are shown in the

4th column of Tab.2, and our method outperforms all the

other methods. As 3DPW is not designed for occlusions, we

selected only the sequences with occlusions for evaluation.

For a fair comparison, the evaluation is performed similar

as [19]. The 5th column in Tab.2 shows that our method

can also obtain better performance than other methods. It

is noted that 3DPW contains numerous outdoor scenes, the

errors on this dataset are higher than others. We then per-

formed the comparison on the proposed 3DOH50K. The

last 3 columns in Tab.2 show the comparison results. From

these columns, we can find that our method performs better
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Figure 6. Qualitative results of our approach. The left 3 columns show the results on our 3DOH50K. The right 3 columns are the examples

on 3DPW[45], UP-3D[21] and Synthetic Occlusion Human3.6M[13] respectively. More results without SMPL fitting are shown in the
Sup. Mat.

Method Runtime

Human3.6M [13]
(Protocol#2)

Human3.6M [13]
(Synthetic Occlusion) 3DPW [45] Our 3DOH50K

PA-MPJPE PA-MPJPE PA-MPJPE PA-MPJPE Surface Error

SMPLify[3] 100 sec 82.3 159.4 114.0 156.4 177.3

SMPLify-X[32] 30 sec – 145.6 151.3 117.2 132.4

HMR[17] 0.420 sec 56.8 82.2 103.8 83.2 92.9

GraphCMR[20] 0.033 sec 50.1 74.4 104.8 76.3 84.0

SPIN[19] 0.016 sec 41.1 64.9 95.4 67.5 73.6

Ours 0.013 sec 41.7 56.4 72.2 58.5 63.3

Table 2. Comparisons with the state-of-the-art methods on Human3.6M, 3DPW and our 3DOH50K. Synthetic Occlusion Human3.6M

means that we randomly render the synthetic occlusion on images, the minimum is 30% of the bounding-box pixels occluded, details can

be found in 5.1. Numbers are 3D joint errors and Surface errors in mm.

than all previous methods for about 10mm.

Furthermore, we studied the effect of occlusion ratios on

the reconstruction accuracy by synthesizing different ratios

of occlusion on the Synthetic Occlusion Human3.6M. The

results are presented in Fig.8. The curves prove that our

method can maintain good performance even with an occlu-

sion ratio of more than 50%. In addition, due to the effec-

tiveness of the proposed UV inpainting branch, our method

is relatively insensitive to the increase of occlusion ratios.

5.4. Ablation Study

Importance of the UV inpainting branch. In Tab.3, we

tested different model structures to demonstrate the impor-

tance of our UV inpainting branch. Results show that it

is difficult to directly predict object-occluded human shape

and pose from color images. We also tried to estimate par-

tial UV maps from occluded color images and then inpaint

partial maps in a cascade manner. It turns out that latent

space supervision performs better in our method.

Importance of the saliency map estimation. Since color

images contain a lot of invalid information, we performed a

salient detection on color images to obtain valid human fea-

tures. In order to verify the importance of saliency map esti-

mation network, we compared the results of occluded color

images input and color images combined with saliency map

as input. As shown in Tab.3, extra saliency map input im-

proves the performance. Furthermore, it makes our method

also have a good performance in outdoor scenes.

Importance of the proposed part loss. In UV maps, the

whole body is divided into several parts which means that

resampled meshes may have a coarse connection between
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Figure 7. Comparison with different methods. Our method could obtain more visually appealing results.
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Figure 8. Relationship between the reconstruction accuracy and

the occlusion ratio.

Figure 9. Importance of the part loss. The right sub-figure shows

a smoother result with the proposed part loss.

different parts. Therefore, we put an extra constraint on

the connection vertices on UV maps. Fig. 9 shows the re-

sult where we can find that part loss is essential to improve

smoothness.

Method MPJPE PA-MPJPE

end-to-end 73.1 67.3

cascade 62.9 61.9

(w/o) saliency map 60.8 57.9

two-branch 58.2 56.4

Table 3. Comparison of different network structures on the testing

dataset. end-to-end: without UV map inpainting network. cas-
cade: cascade the UV map inpaiting network with the color image

encoder. (w/o) saliency map: without saliency map estimation

network. two branch: the proposed two-branch network. More
details are shown in the Sup. Mat.

6. Conclusion

In this paper, we propose a novel method for the object-

occluded human shape and pose estimation from single

color images. Our main contribution is to utilize a partial

UV map representation to describe the human body occlu-

sion, and convert the occluded human shape estimation as a

UV map inpainting problem. A novel two-branch network

architecture is proposed to train an efficient regressor via

the latent feature matching. We also introduce a saliency

map sub-net to extract the human information from object-

occluded color images. For fertilizing the network train-

ing, we further build a new dataset named as 3DOH50K.

We hope the dataset would promote the future research on

object-occluded human shape and pose estimation.
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