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Abstract

Due to the visual ambiguity, purely kinematic formula-
tions on monocular human motion capture are often phys-
ically incorrect, biomechanically implausible, and can not
reconstruct accurate interactions. In this work, we focus on
exploiting the high-precision and non-differentiable physics
simulator to incorporate dynamical constraints in motion
capture. Our key-idea is to use real physical supervisions
to train a target pose distribution prior for sampling-based
motion control to capture physically plausible human mo-
tion. To obtain accurate reference motion with terrain in-
teractions for the sampling, we first introduce an interac-
tion constraint based on SDF (Signed Distance Field) to
enforce appropriate ground contact modeling. We then de-
sign a novel two-branch decoder to avoid stochastic er-
ror from pseudo ground-truth and train a distribution prior
with the non-differentiable physics simulator. Finally, we
regress the sampling distribution from the current state of
the physical character with the trained prior and sample
satisfied target poses to track the estimated reference mo-
tion. Qualitative and quantitative results show that we can
obtain physically plausible human motion with complex ter-
rain interactions, human shape variations, and diverse be-
haviors. More information can be found at https://
www.yangangwang.com/papers/HBZ-NM-2022-
03.html

1. Introduction
Recent years have witnessed significant development of

marker-less motion capture, which promotes a wide va-
riety of applications ranging from character animation to
human-computer interaction, personal well-being, and hu-
man behavior understanding. Extensive existing works can
kinematically capture accurate human pose from monocular
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Figure 1. Our method captures physically plausible human motion
from monocular RGB videos via neural motion control.

videos and images via network regression [22,25,26,66,67]
or optimization [6,38,41,51]. However, they are often hard
to leverage in real-world systems due to a series of artifacts
that are not satisfied biomechanical and physical plausibil-
ity (e.g., jitter and floor penetration).

To improve motion quality and physical plausibility, a
few works focus on capturing human motion using physics-
based constraints. [42, 46, 47, 53, 57] incorporate phys-
ical laws as soft constraints in numerical optimization
framework and reduce artifacts. To make optimization be
tractable, they can only adopt simple and differentiable
physical models, which may result in high approximation
errors. Other methods [40, 60, 63] utilize non-differentiable
physics simulators with deep reinforcement learning (DRL)
to achieve accurate and physically plausible 3D human
pose estimation. However, training a desirable policy re-
quires complex configurations [1, 5, 31], and it may be sen-
sitive to environmental changes [39, 60]. The limitations
above make them be infeasible to estimate human pose with
scene interactions and subject varieties for motion capture
tasks. Nevertheless, motion control, typically sampling-
based methods [35], have achieved an impressive perfor-
mance in reproducing highly dynamic and acrobatic mo-
tions and is robust to contact-rich scenarios, which shows a
way for general physics-based motion capture.

In this paper, we aim to construct a physics-based motion



capture framework that is more general to complex terrains,
shape variations, and diverse behaviors along sampling-
based motion control. However, employing sampling-based
motion control in monocular motion capture tasks faces sev-
eral challenges. First, conventional sampling-based meth-
ods [33, 35] often track the accurate reference motion from
commercial motion capture systems, while the estimated
motion from monocular RGB videos is noisy and physically
implausible. An inaccurate contact results in an unnatural
pose would even lead to an imbalance state for the char-
acter. Second, it is complicated to find an optimal distri-
bution for the sampling. Although CMA (Covariance Ma-
trix Adaptation) [11] is proved to be able to adjust distribu-
tion with black-box optimization [33], it requires evaluat-
ing plenty of samples for the distribution adaption, which
is time-consuming. Furthermore, the adaption relied on
random samples from an initial distribution imposes uncer-
tainty for the motion capture.

To address the obstacles, our key-idea is to train a mo-
tion distribution prior with physical supervisions. The
prior provides feasible solutions for sampling-based mo-
tion control to capture physically plausible human mo-
tion from a monocular color video, which is named as
Neural Motion Control (Neural MoCon). We first intro-
duce a human-scene interaction constraint to obtain a ref-
erence motion with appropriate contacts for sampling. Dif-
ferent from existing works [42, 47] to detect foot-ground
contact status, our proposed interaction constraint adjusts
the distance between two disconnected meshes via SDF,
enforcing the human model to be close to the ground sur-
face. Then, we have tried to train an encoder to regress
the distribution with KL divergence (Kullback-Leibler di-
vergence) and pseudo ground-truth from CMA. However,
for the same character state and reference pose, the CMA
method obtains different distributions, thus the stochastic
error of CMA results in network divergence and erroneous
regression. Consequently, we propose a novel two-branch
decoder to address this obstacle. As shown in Fig. 3, the
target pose sampled from the estimated distribution is fed
into a physical branch to verify the validity. Since the sim-
ulator is non-differentiable, we use the output to supervise
the pose decoder and enforce it to transfer the target pose
to a dynamical pose like the simulator. Moreover, a recon-
struction loss from the reference pose is applied to the de-
coded pose to promote correct distribution encoding. When
the encoder is convergent, we use it to encode distribution
and sample target poses for the physical branch to capture
physically plausible motion. The main contributions of this
work are summarized as follows.

• We propose an explicit physics-based motion capture
framework that is more general to complex terrain,
body shape variations, and diverse behaviors.

• We propose a novel two-branch decoder to avoid

stochastic error from pseudo ground-truth and train
the distribution prior with a non-differentiable physics
simulator.

• We propose an interaction constraint based on SDF to
capture accurate human-scene contact from complex
terrain scenarios.

2. Related Work
Physics-based motion capture. VideoMocap [53] first em-
ploys physical constraints in motion capture by jointly opti-
mizing the human pose and contact force, and this approach
requires manual intervention to achieve satisfying results.
Based on [53], [32] and [42,47,64] further consider the ob-
ject interaction and kinematic pose estimation, respectively.
Recently, Shimada et al. [46] proposed a neural network-
based approach to estimate the ground reaction force and
joint force and updated the character’s pose using the de-
rived accelerations. To make optimization tractable, their
methods can only adopt simple and differentiable physics
models with limited constraints, which results in high ap-
proximation errors. To address this problem, some latest
works [40, 60, 62, 63] employ DRL to implement motion
capture based on non-differentiable simulators. Neverthe-
less, training a desirable policy requires complex configu-
rations [1, 5, 31], and it may be sensitive to motion types
and body shape variations [39, 60]. Vondrak et al. [50]
directly used the silhouette to construct a character-image
consistency to train a state-machine controller. However,
this approach could only be generalized to a variety of mo-
tions, and the recovered motion seems to be unnatural. In
this work, we adopt neural motion control to capture mo-
tion rather than DRL. With the trained distribution prior,
our method is more general to different terrain interactions,
human shape variations, and diverse behaviors.
Physics-based character control. Physics-based character
control is a longstanding problem [28, 29, 45, 49, 54, 55].
Early works rely on the inverted pendulum model [21],
passive dynamics walking [27] and zero-moment-point-
based trajectory generation [12] can handle simple mo-
tions. To solve large-DOF (degree-of-freedom) models,
optimization-based methods [23,30,48,56] are widely used
to simulate and analyze human motions. However, it re-
quires substantial computational effort to deal with a com-
plex motion. Other methods [3, 59] approximate the actual
human control systems and can produce both normal and
pathological walking motions. These control-based meth-
ods can generalize to a variety of skills [3, 33–35, 59], but a
set of hyperparameters are required to tune for the desired
behaviors. Recent works adopt DRL to control physical
character [28, 39, 58]. It shows that DRL can achieve high-
quality motion when motion capture data are provided as a
reference [39]. Curriculum learning promotes the DRL to



Figure 2. Overview. Our method first estimates reference motion with accurate human-scene interaction as well as human shape from
a monocular RGB video (a). Then, a prior regresses a distribution from the state of physical character and the reference pose to sample
target poses (b). The physics simulator is used to obtain a physically plausible pose for each sample (c). The sample with the lowest loss
is adopted and used for the next frame after sample evaluation (d).
learn more complex tasks [58]. However, training an opti-
mal policy takes numerous low- and high-level design deci-
sions, which strongly affect the performance of the resulting
agents. We follow sampling-based motion control [33, 35]
to construct a general framework. Furthermore, we pro-
pose a network-based distribution prior to avoid the time-
consuming distribution adaption and to improve the stabil-
ity for their methods.
3D human with scene interaction. Modeling 3D hu-
man with scene interactions will promote the computa-
tional understanding of human behavior, which is important
for metaverse and related applications. Previous works in
scene labeling [19], scene synthesis [8], affordance learn-
ing [10, 24] and object arrangement [20] verified human
context is helpful for scene understanding. The prior knowl-
edge of scene geometry can also promote a more reasonable
and accurate human pose estimation. [13, 15, 43, 44] gen-
erate human motion with interaction from the relationship
between scene geometry and human body parts. [37] fur-
ther utilizes this relationship to recover interactions from
videos. To explicitly use scene information to improve
pose accuracy, [14] formulates two constraints in optimiza-
tion to reduce interpenetration and encourage appropriate
contact. [65] also adopts the optimization-based approach
and proposes a smoothness prior to improve motion qual-
ity. However, numerical optimization with soft constraints
is hard to avoid artifacts like interpenetration, which is the
main concern for human-scene reconstruction. In contrast,
our method relies on a physics simulator [4] to provide hard
physical constraints. With the network-based distribution
prior, our method can obtain accurate terrain interactions
via neural motion control.

3. Method
We propose a framework with a non-differentiable

physics simulator [4] to capture physically plausible hu-

man motion. We first describe the representations of our
kinematic and dynamical characters (Sec. 3.1). Then, an in-
teraction constraint is designed to obtain reference motion
with appropriate contact information (Sec. 3.2). In addi-
tion, we introduce a distribution prior trained with a novel
two-branch structure for neural motion control (Sec. 3.3).
Finally, we regress a distribution and sample satisfied target
poses to track the estimated reference motion (Sec. 3.4).

3.1. Preliminaries

Representation. The kinematic motion is represented with
SMPL model [36]. To represent different human shapes in
the physics simulator, we design our physical character to
have the same kinematic tree as SMPL. The bone length and
link shape of the character can be directly obtained from the
estimated SMPL parameters. We fix a few skeleton joints
to have 57 DOFs. The state of character is denoted s =
(q, q̇), where q and q̇ are the pose and velocity, respectively.
The details of the model can be found in the supplementary
material.

Sampling-based motion control. We briefly review the
sampling-based motion control approach [35] to promote
understanding of our method. A kinematic pose q̃t is used
as a reference, and we wish the physical character to dy-
namically track the reference pose via PD-control (Propor-
tional Derivative). However, due to the inaccuracies of kine-
matic pose estimation and PD controller, the tracking al-
ways fails when directly applying the reference pose as the
desired setpoint. The sampling algorithm samples a correc-
tion ∆q̃t for reference pose, thus employing the target pose
qt = q̃t+∆q̃t can compensate the discrepancies. The qual-
ity of samples is evaluated by a loss function. By selecting
the sample with the lowest loss, we can obtain the physi-
cally plausible motion. More details can be found in [35].



3.2. Reference motion estimation

The neural motion control requires reference motion
with accurate ground contact to drive the physical character.
To obtain the contact information, previous works [47, 60]
train a network to estimate a binary foot contact status.
However, no sufficient data can be utilized for training in
complex terrain scenarios (e.g., stairs and uneven ground).
We address the problem by incorporating an SDF-based in-
teraction constraint in an optimization-based framework.

Specifically, we optimize the latent code of pre-trained
motion prior in [16] to fit SMPL models to single-view 2D
poses detected by AlphaPose [7]. The overall formulation
is:

argmin
(z,R,T )1:T ,β

L = Ldata + Lprior + Lscene , (1)

where z,R, T are the latent code, global rotation and trans-
lation for character in each frame. β is the human shape
parameter, and T is the frame length. The data term is:

Ldata =

T∑
t=1

σt

∥∥∥Π(
j̃t

)
− pt

∥∥∥2 , (2)

where p, σ are 2D poses and their corresponding confi-
dence. j̃ is the model joint position. We further add the
regularization term:

Lprior = ∥β∥2 +
T∑

t=1

(
∥zt∥2 + ∥zt+1 − 2zt + zt−1∥2

)
.

(3)
Due to the depth ambiguity, the recovered 3D human

may float in the air or penetrate with the ground mesh with
only the above constraints. With such reference motion, the
simulated results are unnatural and incorrect. To reconstruct
more accurate human-scene interactions from single-view
videos, we generate a differentiable SDF of the scene mesh
using [18]. In the optimization, we follow [14] to sample
the SDF value for the pre-defined foot keypoints and use it
to construct an objective function:

Lscene = ρ∥ SDF(ǰ)∥2, (4)

where ǰ is the 3D positions of the keypoints and SDF is
the sample operation. Our optimization has four stages.
Since the proximate motion can be obtained in the first
three stages, we only apply the interaction term to refine
the ground contact in the last stage. To make our method
to be compliant with airborne motions, we further apply a
Geman-McClure error function ρ [9] to down-weight key-
points that are far from the scene mesh.

3.3. Distribution prior training

It is essential to find an optimal target pose distribution
to achieve physically plausible motion for sampling-based

Figure 3. Different from conventional approaches (gray). We
propose a two-branch decoder to avoid stochastic error from the
CMA-ES method and train the distribution prior with real physi-
cal supervision. The non-differentiable physical branch simulates
the sampled result, and the pose decoder intermediately employs
the physical information to optimize the prior with simulation loss
and reconstruction loss.

motion control. Previous works [33] use (µW , λ)-CMA-
ES method [11] to realize the distribution adaption. How-
ever, the time-consuming operation and stochastic error of
the adaption make it hard to be leveraged in motion capture
for real-world applications. We propose to replace this op-
eration and improve the performance with a network-based
distribution prior. To train the network, a naive idea is to
directly supervise the distribution using the CMA results.
Given a pair of character state and reference pose, it seems
that we can provide the supervisions by running CMA on-
line before feeding the data into the network or preparing
the pseudo supervision with CMA in advance. Actually, the
two strategies are both infeasible in real implementation.
For the same character state and reference pose, the CMA
method obtains different distributions, resulting in network
divergence and erroneous regression for online and offline
strategies, respectively.

To solve this obstacle, we propose a two-branch decoder
to assist training an accurate and generalized distribution
encoder. As shown in the Fig. 3, we first pre-train the dis-
tribution encoder with the supervision from offline CMA.
Since the network parameters trained with the inaccurate
supervisions are incorrect, we then introduce a physical
branch to verify the validity of the sampled target pose. Due
to the non-differentiability of the simulator, we further de-
sign a pose decoder to intermediately employ physical su-
pervision to train the distribution encoder.

Specifically, the KL divergence with pseudo ground-
truth distributions is used to pre-train the encoder:

Lkl = KL(Q(∆q̃t | st−1, q̃t)∥D(µt, σt)), (5)

where D(µ, σ) is the distribution prepared by (µW , λ)-
CMA-ES method and Q(∆q̃ | s, q̃) is the estimated dis-
tribution. To improve the generalization ability, we sample



correction of the reference pose from the estimated distri-
bution, which is denoted as ∆q̃t. Thus, the target pose is
qt = q̃t +∆q̃t.

To optimize the distribution encoder with real physi-
cal supervision, the sampled target pose is fed to the non-
differentiable physics simulator to get the simulated pose.
We design a pose decoder to imitate the physical branch by
supervising it with the simulated pose.

Lsim = ∥q̂t − qt∥
2
+
∥∥∥ĵt − jt

∥∥∥2 , (6)

where q̂, ĵ and qt, j are pose and joint positions of the
estimated result and the simulated result, respectively. In
addition, a reconstruction loss is applied to enforce optimal
distribution encoding:

Lrec = ∥q̂t − q̃t∥
2
+
∥∥∥ĵt − j̃t

∥∥∥2 . (7)

With the pose decoder, the encoder can gradually encode
valid distribution to sample effective poses in the simulator.
We further add a regularization term to ensure the network
will not be easily overfitted:

Lreg = ∥ϕ∥22. (8)

We reduce the weight of KL loss when training with the
two-branch decoder. The overall loss function is:

Ldist = Lsim + Lrec + λLkl + Lreg. (9)

The λ is 0.2 in our experiments. When the training is
finished, the encoder is utilized to construct a neural motion
capture framework in Sec. 3.4.

3.4. Motion capture with neural motion control

With the trained distribution prior, we then capture hu-
man motion by tracking the kinematic reference motion by
a sampling strategy. As shown in Fig. 2, the reference pose
and the current state of character are first fed into the prior
to encode target pose distribution. Then, we sample target
poses and simulate them in the simulator. The quality of
each sample is evaluated with character-level and image-
level loss functions. The sample with the lowest loss will
be adopted for the next frame. Since the reference motions
from uneven terrains are noisy, we design several loss func-
tions to evaluate sample quality.

The loss between simulated pose and reference pose is
first used to measure the pose and joint position consistency.

Ltra = ∥qt − q̃t∥
2
+
∥∥∥jt − j̃t

∥∥∥2 . (10)

We find that the dynamical state of the character is critical
for physics-based motion capture. We then introduce a dy-
namical loss to evaluate the velocity consistency:

Ldyn =
∥∥q̇t − ˙̃qt

∥∥2 + ∥∥∥j̇t − ˙̃jt

∥∥∥2 , (11)

where q̇ and j̇ are joint angular velocity and linear velocity,
respectively. To let the physical character keep balance, we
follow [35] to add a balance term to adjust CoM (Center of
Mass):

Lban =

M∑
m=0

∥∥∥dm
t − d̃

m

t

∥∥∥2 + ∥∥∥j̇CoM

t − ˙̃jCoM
t

∥∥∥2 , (12)

where, dm = (jm − jCoM )|z=0, which denotes the planar

vector from end-effector m to CoM. The j̇
CoM

is the linear
velocity of CoM and M is number of end-effectors.

Different from DRL, we can directly use image features
to evaluate the quality of the sample. With 2D pose and
corresponding confidence, the image-level loss makes our
method more robust to occlusion scenarios:

Lreproj = σ ∥Π(jt)− pt∥2 . (13)

The overall loss function for the sampling procedure is:

Lsam = Ltra + Ldyn + Lban + Lreproj . (14)

Finally, the sample with the lowest loss in each frame con-
sists of a complete physically plausible human motion.

4. Experiments
In this section, we conduct several qualitative and quan-

titative experiments to demonstrate the effectiveness of our
method. We first introduce the implementation details and
datasets in Sec. 4.1 and Sec. 4.2. Then, the comparisons
with the state-of-the-arts are shown in Sec. 4.3. Finally,
ablation studies in Sec. 4.4 are conducted to evaluate key
components.

4.1. Metrics

The common metrics of the Mean Per Joint Position
Error (MPJPE) and the MPJPE after rigid alignment of
the prediction with ground truth using Procrustes Analysis
(MPJPE-PA) are used to evaluate joint accuracy. To evalu-
ate physical plausibility, we use the metrics proposed in [47]
and [57] to measure motion jitter and foot contact. eS is the
difference in joint velocity magnitude between the ground
truth motion and the predicted motion. eS and its standard
deviation σS are used to assess motion smoothness. ef,z is
the foot position error on z-axis. We adopt this metric to
evaluate foot floating artifacts. More details can be found in
their original paper.

4.2. Datasets

Human3.6M [17] is a large-scale dataset, which con-
sists of 3.6 million 3D human poses and corresponding im-
ages. Following previous work [63], we train our model
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Figure 4. Qualitative comparison with other methods. For a fair comparison, we represent all results using our character with corresponding
shape variations. The results show that our method can obtain physically plausible and natural human motion from monocular RGB videos.

on 5 subjects (S1,S5,S6,S7,S8), and test on the other sub-
jects (S9,S11) with 25Hz.

GPA [52] is a 3D human dataset with both human-scene
interactions and ground-truth scene geometries. It utilizes
a commercial motion capture system to collect data. The
sequence 0, 34, 52 are used to test, and the rest are served
as training data. With the scene geometries, we verify the
performance of our method on more complex terrains.

3DOH [66] is the first dataset to handle the object-
occluded human body estimation problem, which contains
3D motions in occluded-scenarios. We use the sequence 13,
27, 29 in this dataset to evaluate our method on occlusion
cases.

GTA-IM [2]. Since there are limited ground-truth ter-
rain data, we use this synthetic dataset as additional human-
scene interaction cases. The scene meshes are recovered
from the depth map. We conduct qualitative experiments
on this dataset.

4.3. Comparison to state-of-the-art methods

There are several kinematic and dynamical approaches
that report results on Human3.6M datasets. As shown

Method MPJPE PA-MPJPE eS σS ef,z
∗HuMoR [41] 97.5 68.5 24.2 25.9 43.2
∗DMMR [16] 96.0 67.4 14.4 12.6 48.6
∗VIBE [25] 65.9 41.5 25.5 25.7 34.0
EgoPose [61] 130.3 79.2 – – –
PhysCap [47] 97.4 65.1 7.2 6.9 –
SamCon [33] 78.4 63.2 4.0 4.3 20.4
NeuralPhysCap [46] 76.5 58.2 4.5 6.9 –
Xie et al. [57] 68.1 – 4.0 1.3 18.9
SimPoE [63] 56.7 41.6 – – –
Ours 72.5 54.6 3.8 2.4 14.4

Table 1. Comparisons with state-of-the-art methods on Hu-
man3.6M dataset. Our method achieves good performance in
physical plausibility and motion smoothness. ∗ denotes the
kinematics-based method.

in Tab. 1, we first evaluated our method on this dataset to
demonstrate that our neural motion control works well on
flat ground. [16, 25, 41] are recent works to estimate kine-
matic SMPL parameters. Although the explicit dynamics
of the human model are not considered, [16, 41] learn im-
plicit dynamics via VAE and improve physical plausibility
by using prior knowledge. The rest methods in Tab. 1 are
dynamics-based methods. Specifically, SamCon [33] is de-



Figure 5. Our method is general to different terrain interactions, human shape variations, and diverse behaviors.

Method 3DOH GPA
MPJPE PA-MPJPE eS MPJPE PA-MPJPE ef,z

∗DMMR [16] 102.9 65.8 16.2 107.0 87.4 32.8
∗VIBE [25] 98.1 61.8 26.5 114.3 80.6 36.4
∗HuMoR [41] 105.1 60.6 21.9 117.2 86.3 58.7
SamCon [33] 102.4 95.4 9.7 104.7 87.1 28.3
PhysCap [47] 107.8 93.3 12.2 103.4 91.2 36.1
Ours 93.4 86.7 9.2 94.8 80.3 21.2

Table 2. Quantitative comparison on 3DOH and GPA dataset. Our
method achieves state-of-the-art in complex terrain scenarios and
occlusion cases. ∗ denotes the kinematics-based method.

signed for animation. We used this method to track our
kinematic motion and adopted it as a baseline to compare
among sampling-based methods.

In Tab. 1, we found that VIBE achieves the best perfor-
mance in terms of PA-MPJPE. It relies on a GRU-based
network to build correspondences among different frames.
However, directly regressing kinematic SMPL parameters
causes the largest smoothness error and results in visually
noticeable motion jitter. Furthermore, VIBE shows a se-
vere penetration with the ground in Fig. 4. Due to model
discrepancies between the motion capture subject and the
physical character, the joint position error for dynamics-
based methods is higher than kinematics-based approaches.
SimPoE [63] utilizes a model with a similar shape as Hu-
man3.6M subjects and get comparable results to VIBE.
However, for different subjects with the variation of body
proportion and shape, this method requires to re-train the
policy. Benefited from the proposed target pose distribution
prior, our method can adapt to shape variation. Thus, we
can update the bone length of the physical character model
with the estimated human shape and directly use it to cap-
ture human motion from images. Our method also obtained
smooth motion and achieves state-of-the-art in terms of eS .

We then compared our method to others on the 3DOH
dataset. It is tricky to obtain accurate reference motion for
occlusion cases. As shown in the 5th column of Fig. 4, the
inaccurate reference motion will result in a large deviation
between 3D pose and image observation for other physics-
based methods. However, due to the image-level loss, our
method got more accurate results. Moreover, SamCon also
based on a sampling approach to get human motion. The

results in Tab. 2 and Fig. 4 show that our network-based
distribution prior can get more appropriate distribution and
then produce natural and precise motion.

On the GPA dataset, we evaluated our method with com-
plex terrains. The interactions with objects and terrains im-
pose great difficulty for kinematics-based methods. The es-
timated poses float on the air or penetrate with the scene
mesh for their methods (Fig. 4). Since PhysCap uses a
numerical optimization framework with soft physical con-
straints to capture human motion, the results also show
physical artifacts. The qualitative and quantitative results
on GPA dataset in Fig. 4 and Tab. 2 show that neural mo-
tion control is more proper for contact-rich scenarios.

4.4. Ablation studies

Two-branch decoder. As mentioned before, directly
supervising the distribution encoder without two-branch
decoder will result in erroneous regression. In Fig. 6
and Tab. 3, we conducted comparisons between the distri-
bution prior trained with and without the two-branch de-
coder. Without the decoder, the encoder can not regress
correct distribution to sample a valid target pose, thus caus-
ing an unsatisfied simulated pose. The quantitative results
in Tab. 3 show that the two-branch decoder induces major
improvement and demonstrate that it is the most important
component for our method.

Distribution prior. We compared different methods of
distribution generation to verify the superiority of our distri-
bution prior. We first replaced the distribution encoder with
uniform distribution with a pre-defined range. The results
in Fig. 6 show that it can not generalize to a large variety
motion types. As shown in Tab. 3, since there is a stochas-
tic error for the CMA method, the gaussian distribution with
CMA adaption is inferior to the distribution encoder.

Interaction constraint. We further conducted several
experiments to illustrate the necessity of the interaction con-
straint. Due to the visual ambiguity, it is difficult to recon-
struct accurate human-scene interactions with complex ter-
rains (Fig. 7). In Tab. 3, the optimization with interaction
constraint gets more accurate foot position on GPA dataset.
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Figure 6. Ablation on different components. (a, d, h) are the results of our method that removes interaction constraint, image-level loss,
and two-branch decoder, respectively. (e, f) replace the distribution prior with uniform distribution and gaussian distribution. (c) is the
kinematic result from our optimization and (b) is the simulated result with ground-truth reference motion.
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Figure 7. The kinematic reference motion obtained with and with-
out interaction constraint on complex terrain.

Method GPA 3DOH
MPJPE PA-MPJPE ef,z MPJPE eS

∗DMMR [16] 107.0 87.4 32.8 102.9 16.2
∗Kinematic 106.2 87.2 27.3 94.4 16.5
w/o two-branch 142.2 126.7 28.4 136.8 13.2
w/ Uniform Dist. 136.6 119.1 29.6 142.1 10.3
w/o Inter. Cons. 116.4 109.4 24.3 93.4 9.4
w/ Gaussian CMA 103.9 84.4 23.5 95.4 9.8
w/o image-level loss 95.8 84.4 21.3 96.3 9.7
w/ GT reference 93.6 80.0 17.3 89.6 9.2
Neural MoCon 94.8 80.3 21.2 93.4 9.2

Table 3. Quantitative results of ablation studies. w/o denotes to re-
move corresponding component of our method. w/ Uniform Dist.
and w/ Gaussian CMA indicate to replace distribution prior with
uniform and gaussian distribution. w/ GT reference uses ground-
truth reference motion for neural motion control. ∗ denotes the
kinematics-based method.

In addition, an inaccurate contact seriously affects the per-
formance of sampling-based motion control. Fig. 6 (a)
shows a reference pose floating on the air can trigger im-
proper simulated pose. The gap between the results of the
method with and without this constraint on GPA is greater
than that on 3DOH in Tab. 3, which proves its importance
for motion capture on complex terrains.

5. Limitation and future work
Although our method can obtain physically plausible

human motion via neural motion control, there are some

limitations for the current implementation. First, the dis-
crepancy between the geometric primitives of our character
and the real human body makes our method unable to re-
construct accurate body contact (e.g., Lying on the sofa).
To solve this problem, building a more delicate character
model like [63] may be a feasible approach. Second, the cu-
mulative error of an undesirable sample may result in failure
to sample a long sequence. Future work can integrate long-
term temporal information in the sampling. Finally, due to
a lack of ground-truth terrain data, we can only evaluate our
method on similar interactions like stairs for motion cap-
ture tasks. Therefore, to build a large-scale human-scene
interaction dataset for human motion capture in complex
scenarios is also worthwhile.

Among Neural MoCon, DRL-based methods, and tra-
ditional sampling-based motion control, DRL can obtain
highly accurate results for a specific task, and sampling con-
trol is more general to unknown scenarios. Neural MoCon
is in between these two typical technical approaches. To
combine the accuracy of DRL and the generalization ability
of sampling control may be a potential direction to promote
future physics-based motion capture.

6. Conclusion

In this paper, we propose a framework to capture phys-
ically plausible human motion with complex terrain in-
teractions, human shape variations, and diverse behaviors.
We first introduce an interaction constraint based on SDF
in optimization to estimate accurate human-scene contact.
Then, a novel two-branch decoder is designed to train a
distribution prior with real physical supervision. With the
trained prior and the estimated reference motion, several
loss functions are used to select a satisfied sample to con-
sist of a complete human motion. The proposed method
has better generalization ability than DRL-based methods
and gets more accurate results than conventional sampling-
based motion control.
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