

Dynamic Multi-person Mesh Recovery from Uncalibrated Multi-view Cameras

Problem

We address the problem of **directly** recovering multiple human bodies with unknown extrinsic camera parameters.

(a) Input

Challenges:

(b) Estimated bodies and cameras

- > inter-person interactions and occlusions
- > a lack of dense corresponddences

Key idea

Our key idea is **incorporating mo**tion prior knowledge into simultaneous optimization of extrinsic camera parameters and human meshes from noisy human semantics.

Contribution

- > A one-stage optimization framework
- > A physics-geometry consistency to reduce low and high frequency noises in detected human semantics.
- > A novel latent motion prior to jointly optimize cameras and human motions from noisy inputs.

Buzhen Huang, Yuan Shu, Tianshu Zhang, Yangang Wang Southeast University, China

(a) w/o physics-geometry

(b) VPoser-t

(c) MotionPrior

(d) VPoser-t + opt cam (e) MotionPrior + opt cam

Method

Belagiannis *et al*. [2] Belagiannis *et al.* [3] Bridgeman *et al*. [6] Dong *et al*. [16] Chen *et al*. [9] Zhang *et al*. [62] Chu *et al*. [11] VPoser-t [48] Ours

Campus			Shelf		
A1	A2	A3	A1	A2	A3
82.0	72.4	73.7	66.1	65.0	83.2
93.5	75.7	85.4	75.3	69.7	87.6
91.8	92.7	93.2	99.7	92.8	97.7
97.6	93.3	98.0	98.9	94.1	97.8
97.1	94.1	98.6	99.6	93.2	97.5
_	_	_	99.0	96.2	97.6
98.4	93.8	98.3	99.1	95.4	97.6
97.3	93.5	98.4	99.8	94.1	97.5
97.6	93.7	98.7	99.8	96.5	97.6