Shape and Pose Estimation for Closely Interacting Persons Using Multi-view Images

Kun Li¹, Nianhong Jiao¹, Yebin Liu², Yangang Wang³ and Jingyu Yang⁴†

¹School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
²Department of Automation, Tsinghua University, Beijing 100084, China
³School of Automation, Southeast University, Nanjing 210096, China
⁴School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract
Multi-person pose and shape estimation is very challenging, especially when the persons have close interactions. Existing methods only work well when people are well spaced out in the captured images. However, close interaction among people is very common in real life, which is more challenging due to complex articulation, frequent occlusion and inherent ambiguities. We present a fully-automatic markerless motion capture method to simultaneously estimate 3D poses and shapes of closely interacting people from multi-view sequences. We first predict the 2D joints for each person in an image, and then design a spatio-temporal tracker for multi-person pose tracking based on multi-view videos. Finally, we estimate 3D poses and shapes of all the persons with multi-view constraints using a skinned multi-person linear model (SMPL). Experimental results demonstrate that our method achieves fast but accurate pose and shape estimation results for multi-person close interaction cases. Compared with existing methods, our method does not need pre-segmentation for each person and manual intervention, which greatly reduces the complexity of the system including time complexity and system processing complexity.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Computer Graphics]: Scene Analysis—Shape, Motion

† Corresponding author: yjy@tju.edu.cn.
1. Introduction

Markerless human motion capture has been a popular and challenging topic in computer vision and computer graphics. Its main task is to recover a temporally coherent representation of dynamic 3D shape by tracking the motion of a moving object from videos. Motion capture for a single person has made tremendous advance for the last decade [AST08,GSA09,VBM08,LDX11,WLT18]. However, these methods require carefully designed camera settings or controlled studios, and rely on good segmentation. In the case of multiple persons, direct application of existing methods for the single person will fail to generate satisfying results due to the difficulties of multi-person segmentation and pose estimation. Although some methods [CB10,MKGH17,WSVT13] can handle the multi-person situation, the captured scene is limited to very simple interaction without inter-occlusion, such as face-to-face playing a ball. However, the interaction among multiple persons in real life is usually very close, e.g., a hug, a double dance or a fight, etc., which is also common in games and movies. Therefore, reconstructing the shapes and poses of closely interacting people is crucial for practical application.

To our best knowledge, no existing methods can fully-automatically and simultaneously estimate 3D shapes and poses of closely interacting people. More importantly, there are tremendous ambiguities where commonly-used features like color, edges, or keypoints cannot be individually assigned to each person. When people interact closely, problems become more complicated and more challenging due to occlusion, truncation and inherent ambiguity. Liu et al. [LGS13] propose a markerless motion capture method for closely interacting persons using multi-view image segmentation, but this method need a laser scan to capture a template mesh and manual intervention to rig a skeleton. Moreover, the computational complexity of this method is very high, and its result heavily relies on the segmentation.

In this paper, we propose a new markerless motion capture method to achieve automatic 3D shape and pose estimation for closely interacting persons from multi-view videos. We first utilize RMPE [FXTL17] to estimate 2D joints of each person in a single image and track the same person using spatio-temporal tracking. Then, we employ a popular statistical body shape model, SMPL [LMB15], as an implicit representation to estimate 3D poses and shapes of all the persons with multi-view constraints. Experimental results show that our method achieves appealing results with much less computation time and without manual intervention, e.g., lighting and background. Therefore, our method has more flexibility and the computation time is much less than the state-of-the-art method.

The main contributions of this paper are summarized into the following three aspects:

- **Fully-automatic 3D pose and shape estimation for close interacting persons**. Our method do not need manual intervention, template mesh scan and segmentation for each person. It has more flexibility and less computation time (about 1min per person per time instance without GPU acceleration).

- **Multi-person spatio-temporal pose tracking**. We indicate the same person in the multi-view videos by considering spatio-temporal correspondence. The tracking strategy uses both bounding box and pose information. This drastically reduces the ambiguities.

- **Multi-view 3D pose and shape estimation**. We optimize the 3D poses and shapes of multi-persons from 2D joints estimated by RMPE in videos with multi-view constraints. This is robust to close interaction and occlusion of multi-person.

2. Related Work

2.1. Multi-Person 2D Pose Estimation

In recent years, multi-person pose estimation from an image is gaining increasing popularity because of the high demand for practical applications. However, multi-person pose estimation is challenging due to occlusion, specificity of individual postures and unpredictable interactions between different people. Existing work can be mainly divided into two categories: bottom-up approaches and top-down approaches.

Bottom-Up Approaches Bottom-up approaches [CSWS17,PIT16,IPA16,NHD17] first directly predict all the 2D joints and then assemble them into a complete skeleton for each person. DeepCut [PIT16] detects all the body parts at first, and then label and assemble these parts via integer linear programming. Deepper Cut [IPA16] improves DeepCut [PIT16] using a stronger part detector based on ResNet [HZRS16] and a better incremental optimization strategy proposed by Insafutdinov et al. [IPA16]. OpenPose [CSWS17] adopts Part Affinity Fields (PAFs) to associate body parts with individuals and assemble detected keypoints into different poses of persons.

Top-Down Approaches Top-down approaches [PZK17,HGT17,HGDG17,FXTL17,CWP17] separate the multi-person pose estimation into a two-stage pipeline, *i.e.*, detecting and cropping each person from the image and then applying single person pose estimator for each individual in the cropped patch. Papandreou et al. [PZK17] use the heatmaps with offsets to estimate the position of keypoints. Mask-RCNN [HGDG17] first obtains human bounding boxes and then predicts the keypoints from the cropped feature map of the corresponding human bounding box. Some recent work [FXTL17,CWP17] combine different human detectors and single person pose estimators to obtain better performance. Currently, top-down approaches have achieved the state-of-the-art performance in almost all benchmark datasets, e.g., MSCOCO [LMB14] and MPI [APGS14a].

2.2. Multi-Person Tracking

Multi-person tracking is a traditional topic studied intensively in computer vision. Although great progress has been made, challenges remain in the cases of false position detection, long-term occlusions and camera motion, especially tracking multi-person under crowded scenes. Recent work mainly focused on tracking-by-detection pipeline. Some work operates on online linking people detection over time [KLCR15,Cho15], and the other work
groups the detections into tracklets and then merges them into tracks [WWC17]. Kim et al. [KLCR15] use a generic CNN (Convolutional Neural Network) to represent person appearance by estimating a target-specific appearance model online. Tang et al. [TAAS16] propose a pairwise feature based on local image patch matching that is similar to [Cho15]. Some trackers depend on data association methods such as greedy or Hungarian Algorithm [XAS15, BGO*16], and consider tracking problem as a maximum weight bipartite matching issue. The nodes of this bipartite graph are the human bounding boxes in two adjacent frames. However, pose information is not taken into account as a major factor in the crowded images. Xiu et al. [XLW*18] proposed an effective pose tracker based on pose flows and re-design two kinds of ORB [RRKB12]-based similarity criteria. We utilize these two kinds of criteria and extend our tracker to multi-view cases for tracking closely interacting multi-people.

2.3. 3D Pose and Shape Estimation

Markerless 3D pose and shape estimation for human bodies has been a longstanding and challenging research topic in computer vision and computer graphics. Most previous methods [AARS13, DR05, DWL*16, GRBS10, RKS13, YGDU11, SIHB12] ignore 3D human shape and only focus on pose. They assume no explicit human body model and directly infer 3D pose from 2D image features. The stochastic gradient-based method [YGDU11] has very good optimization performance by using a Gaussian Process Latent Variable Model (GPLVM). Zhou et al. [ZL*16] create a sparse prior over human pose that captures how these poses appear from multi-views, and demonstrate that the resulting optimization problem is easier to solve. Meanwhile, plenty of methods based on deep learning achieve accurate pose estimation results [DWL*16, MN17, PZS17, TRL16, TGHC16]. Rhodin et al. [RKS*18] propose a deep network to predict 3D pose for actions by using multiple views. Alternatives [ICS14, LZZ15, MRC*16, PZD-D17, TKS*16, ZSZ*16] directly regress from a single image to the 3D pose, but lead to temporally incoherent reconstructions. Some work can estimate 3D body shape from images. However, good silhouettes are often assumed to be available [Blu08, HAR*10] and manual initialization is required [AST*08, PF03, WVT12, VB-M08].

Recently, Xu et al. [XCZ*17] present a general 3D performance capture of a person from monocular video, but a template mesh and the corresponding skeleton are needed at first and manual intervention is required. Yin et al. [YHH*18] propose a data-driven method to generate closely interacting 3D pose-pairs from 2D video annotations based on Markov Chain Monte Carlo (MCMC) sampling. Kanazawa et al. [KBJM18] introduce an end-to-end framework to reconstruct a full 3D mesh of a human body from a single image. However, their method can only use paired 2D data with labels, instead of ground-truth 3D data which is hard to acquire. Bogo et al. [BKL*16] automatically and simultaneously estimate 3D pose and convincing shape of a person from a single unconstrained image, which do not require any user intervention or complex optimization techniques. They utilize 2D joints estimated by a 2D joint detector, e.g., DeepCut [PT*16] or CPM [WRKS16] to fit the projection of 3D SMPL [LMR*15] joints, and infer human shape and pose parameters. Huang et al. [HBC*17] extend that work [BKL*16] to multi-view case by utilizing silhouettes and temporal coherence similar to the method in [RRD*16].

However, all the above methods only focus on a single person or multi-person without close interactions. Liu et al. [LGS*13] propose a multi-person motion capture method to solve the close interaction problem using multi-view image segmentation, but this method need a laser scan to capture a template mesh and manual intervention to rig a skeleton. Moreover, its computational complexity is very high, and its result heavily relies on the segmentation. Ye et al. [YLH*12] use three hand-held Kinect cameras with depth videos to reconstruct human skeletal poses, deforming surface geometries and camera poses, but this method also need a scanned template mesh and manual rigging. In this paper, we adopt the generative human body model SMPL [LMR*15] to reduce the computational complexity, which is a skinned vertex-based model and can accurately represent a wide variety of body shapes in natural human poses. We estimate 2D joints of each person and track the same person using spatio-temporal tracking, which is robust to the close interaction cases. Then, we estimate 3D poses and shapes of all the persons with multi-view constraints.

3. Method

In this section, we present the details of the proposed method. As shown in Fig. 2, We first employ RMPE [FXTL17] to predict 2D joints of each person from each image for each frame. Then, multi-person tracking via spatio-temporal optimization is used to better exploit the temporal correlation between frames and spatial correlation among multi-views. Finally, we fit a statistical 3D body model to the 2D joints of each person by multi-view optimization, and obtain the estimated 3D poses and temporally consistent 3D shapes.

3.1. Multi-Person 2D Pose Estimation

We utilize RMPE [FXTL17] to predict 2D joints of each person and obtain the corresponding confidence scores \(\{c_i\}_{1 \leq i \leq J}\) where \(J\) denotes the number of joints. RMPE adopts Faster R-CNN [RHGS17] as human detector and Pyramid Network [YLO*17] as single person pose estimator, respectively. We run RMPE on each frame of each camera. We find that this configuration has a great performance on inferring the keypoints of closely interacting persons, even in the presence of inaccurate human bounding boxes which is due to close interaction among multiple people.

3.2. Spatio-Temporal Tracking

In Section 3.1, we predict all the 2D joints of per person, but we do not know the everyone’s order in a single image, i.e., the multi-person pose estimation result in an image is unordered for each person and we need employ the tracking method to indicate the same person in each frame of each camera. One way is to use temporal tracking for each sequence, but this may fail for serious occlusion which is common for close interaction. Therefore, we propose a spatio-temporal tracker to better label each person in sequences. Specifically, we first unify the order of the characters in the starting
frame of each video using a spatial criterion, and then use temporal tracking and spatial tracking alternately. Moreover, we take pose information into account to improve the accuracy of tracking. In addition, we do not use the segmentation, which is time-consuming to apply graph-cut model in spatial and temporal domains.

Temporal Tracking Here, we use important temporal information to infer the similarity of two poses in two adjacent frames. Using Hungarian algorithm to match the closest pose in the next frame is an effective method. We first perform frame-by-frame pose estimation on a sequence, and adopt the inter-frame pose distance defined in [XLW+18]:

\[P_d(P_1, P_2) = \sum_{i} \frac{n_i}{m_i}, \]

where \(P_1 \) and \(P_2 \) are the poses of two consecutive frames. Denote \(p_{1i}^j \) and \(p_{2j}^i \) as the \(j^{th} \) keypoints of pose \(P_1 \) and \(P_2 \), respectively. Bounding boxes surrounding \(p_{1i}^j \) and \(p_{2j}^i \) are denoted as \(B_{1i}^j \) and \(B_{2j}^i \). According to the standard PCK [APGS14b], the size of box is 10% person bounding box size. We evaluate the similarity of \(B_{1i}^j \) and \(B_{2j}^i \) by the ORB matching [RRKB12] percentage \(\frac{m_1}{m_2} \), where ORB matching is a very fast binary descriptor based on BRIEF (Binary Robust Independent Elementary Features) similar to SIFT, \(m_1 \) is the feature point extracted from \(B_{1i}^j \) and \(n_i \) is the matching point in \(B_{2j}^i \).

Except the bounding boxes of pose information as a crucial factor, the bounding box of full body is also indispensable, which includes some feature points that pose cannot perceive. Therefore, given the detected bounding boxes \(B_1 \) and \(B_2 \) between frames, we define \(BU = |B_1 \cup B_2| \) as the total feature points in \(B_1 \) and \(B_2 \), and \(BI = |B_1 \cap B_2| \) as the matching feature points between \(B_1 \) and \(B_2 \). The similarity of \(B_1 \) and \(B_2 \) is defined as

\[B_o(B_1, B_2) = \frac{BI}{BU}. \]

We combine Eq. (1) and Eq. (2) to track the same person in two adjacent frames. The final metric function is defined as

\[T(P_1, P_2, B_1, B_2) = P_d(P_1, P_2) + B_o(B_1, B_2). \]

Note that, if we lose the pose in the current frame, we will add it from the previous frame, and we introduce a function to penalize the confidence score \(c_i \) of the \(i^{th} \) keypoint in that 2D pose:

\[C(c_i) = c_i \times mean(\sum_i c_i). \]

Figure 3 show a comparison result of without/with using the proposed penalty function in Eq. (4).

Spatial Tracking The spatial criterion used for the starting frame is defined as

\[B_d(B_1, B_2) = \frac{\sum_{i} m_1^i}{\sum_{i} m_2^i}. \]
where B_1 and B_2 are the bounding boxes in two synchronized frames of different views. m^j_i is the jth feature point detected from B_2, and m^j_k is the jth feature point in B_1 that matches m^j_i. The similarity of B_1 and B_2 is evaluated by finding all matching points in B_1 from B_2, and we can identify and label the same person according to the similarity of a pair of bounding boxes. Note that we use DeepMatching [WRHS13] to robustly match the feature points between multi-view images, which involves a deep, multi-layer, convolutional architecture designed for matching images. Figure 4 shows some matching results using DeepMatching.

For the frames after the starting frame, we use the interleaved spatio-temporal tracking. Specifically, we first track the same person in two adjacent frames of a video using temporal tracking, and then we track the same label of people in the synchronized frames of multi-view video sequences. The verification function for the person label l of view v is defined as

$$K_v(B^1_l) = \begin{cases} 1 & \text{mean}(\sum_{k=1, k \neq v} \sum_{j} m^j_k, \sum_{j} m^j_l) \geq \varepsilon, \\ 0 & \text{otherwise} \end{cases}$$

(6)

where B^1_l is the bounding box of person l in view v, m^j_l is the feature point extracted from B^1_l, and m^j_k is the matching point in the bounding box B^1_l of person l in view k. We set $\varepsilon = 0.3$ by cross-validation. The label in view v is correct if $K_v(B^1_l) = 1$. If $K_v(B^1_l) = 0$, we will re-compute the labels in view v by determining the most accurate label one by one. Specifically, we determine the most accurate label by computing the maximum of similarity mean:

$$H_v(B^v) = \max_p \{ \text{mean}(\sum_{k=1, k \neq v} \sum_{j} m^j_k, \sum_{j} m^j_l) | p \in N_p \},$$

(7)

where N_p is the number of people to be tracked. In order to find the most accurate label, we first calculate the sum of the scores of the matching similarities of the bounding boxes from other views in the remaining labels. Then, we find the most accurate label with the highest score. We repeat Eq. (7) to get the most appropriate label for each person. In this way, we can obtain the labels of poses in view v.

3.3. Multi-Person 3D Pose and Shape Estimation

Given the estimated 2D poses of different persons, we fit a skinned multi-person linear model (SMPL) [LMR 15] for each person by combining multi-view constraints.

Model The Skinned Multi-Person Linear model (SMPL) is a generative model that decomposes human body shape into identity-dependent shape and non-rigid pose-dependent shape. SMPL is defined as a function $M(\beta, \theta; \Phi)$, where β is a vector of shape parameters containing 10 coefficients of a PCA shape space, θ is a vector of pose parameters using the axis-angle representation by a skeleton rig with $J = 23$ joints, Φ is a vector of the learned model parameters from a large number of 3D body meshes. The function outputs a triangulated surface with 6980 vertices. Please refer to [LMR 15] for more detailed meaning of all these parameters.

Estimation Using the single-view SMPLify [BKL 16] to fit multiple 3D human body models is impracticable and infeasible, because a lot of errors will occur due to occlusions especially for close interaction. If we use two or more camera views, many mistakes can be eliminated directly. Therefore, we estimate 3D pose and shape of each person using multi-view constraints. Specifically, we estimate the pose and shape parameters of the 3D body model at each time instance for each person. From the previous subsections, we obtain the 2D joints J_{est} in the ith view together with confidence scores $\{c_{ij}\}_{i \leq J}$, where J denotes the number of joints. We minimize a robust weighted error function to fit a 3D body model by projecting joints of the model to multi-view images in a staged approach. Our energy function is defined as

$$E(\beta, \theta) = E_p(\beta, \theta) + \sum_{v=1}^{V} E_j(\beta, \theta; K_v, J'_{est}),$$

(8)

where E_p is the prior term, E_j is the joint-based data term, K_v are the camera parameters of the ith view. The prior term E_p is defined as

$$E_p = \lambda_0 E_0(\theta) + \lambda_\beta E_\beta(\beta),$$

(9)

which contains a pose prior E_0 and a shape prior E_β learned from the CMU dataset [oCMU] and the SMPL body shape training set respectively, similar to SMPLify [BKL 16]. λ_0 and λ_β are the weights of each prior term.

Figure 4: Multi-view matching results of feature points using DeepMatching [WRHS13].
Figure 5: Reconstruction results of using 1, 2, 4, 8 camera views (from left to right).

Algorithm 1: Our SPECIAL algorithm

Require: Multi-view videos, \(T \in \mathbb{N}, T \geq 1 \).

for \(t = 1 \) to \(T \) do

2D pose estimation using RMPE for multi-view images, and obtain poses \(\{P_p\} \) and the corresponding scores \(\{c_p\} \).

if \(t = 1 \) then

Spatial tracking with multi-view images, and obtain the order(labels) of poses.

else

Temporal tracking using the \((t-1)^{th}\) frame, and obtain the order(labels) of poses.

Spatial tracking with multi-view images, and obtain the updated order(labels) of poses.

end if

end for

for \(t = 1 \) to \(T \) do

3D pose and shape estimation using multi-view constraints, and obtain the model \(M_t(\beta, \theta; \Phi) \).

end for

return the models \(\{M_t(\beta, \theta; \Phi)\}_{1 \leq t \leq T} \).

provide more than 200 frames with frame rates between 15fps and 60fps. In the marker-based data, one of the persons is attached with 38 markers and a commercial marker-based motion capture system PhaseSpace \(^F M \) is used to capture his/her motion as ground truth. There are four challenging sequences available online (Crash, Jump, Wrestle, and Fight), with the frame rate of 45fps. The Fight sequence is a marker-based motion capture sequence, and is very challenging due to fast and complex motion. These sequences record a wide range of close interaction motions, which contain complex and extreme poses.

4.2. Ablation Study

In this section, we perform an ablation study to analyze the effect of different components of our approach.

4.2.1. Multi-View

We investigate how the final reconstruction quality is affected by the number of camera views in Section 4.4. From left to right shows the original captured image of the Crash dataset and the reconstruction results of using 1, 2, 4, 8 camera views, respectively. The cameras are sequentially selected according to their indices. As shown

are scalar weights, and are set to be \{404, 404, 57.4, 4.78\} and \{100, 50, 10, 5\} for four optimization stages, respectively. We remove \(\lambda_k E_k(\theta) \) and \(\lambda_{sp} E_{sp}(\theta; \beta) \) terms from SMPLify \(\text{[BKL}^{*16}] \) because their contributions are no longer obvious.

The multi-view data term \(E_j \) is defined as

\[
E_j(\beta, \theta; K_r, J_{est}) = \sum_{\text{joint} i} c_{i}(\rho_{a}(\Pi_{r_k}(\mathcal{R}_0(J_i(\beta))) - J_{est,i}),
\]

where \(J_i(\beta) \) is a function that predicts the \(i^{th} \) skeleton joint location, \(\mathcal{R}_0 \) is the global rigid transformation via pose \(\theta \), \(\Pi \) is the projection function, and \(c_{i} \) is the confidence value of the \(i^{th} \) joint. We use a robust Geman-McClure penalty function to help alleviate the impact of noise, which is defined as

\[
\rho_a(e) = \frac{e^2}{\sigma^2 + e^2},
\]

where \(\sigma \) is a constant that is set to be 100 in our experiments, and \(e \) is the residual error. We solve the optimization problem by using Powell’s dogleg method \(\text{[NW06]} \), OpenDR \(\text{[LB14]} \) and Chumpy \(\text{[Lop]} \).

Our Shape and Pose Estimation for Close Interaction Algorithm (SPECIAL) is summarized in Algorithm 1.

4. Experimental Results

In this section, we first evaluate the proposed method with ablation study in Section 4.2 on a public available multi-person interaction dataset (MHHI) \(\text{[LSG}^{*11}] \) (Section 4.1), and then compare our method with the state-of-the-art methods qualitatively and quantitatively in Section 4.2. Finally, we give the detailed running times of our method in Section 4.4.

4.1. Dataset

We use MHHI dataset \(\text{[LSG}^{*11}] \) to perform various ablation and comparison experiments. This dataset collects 7 different sequences consisting of 12 synchronized views with the image resolution of 1296 \(\times \) 972, including multi-person markerless motion capture data and multi-person marker-based motion capture data that can be used for quantitative evaluation. Each sequence...
in Figure 5, the reconstruction result becomes better as the number of camera views increases. For the single view, close interaction causes the wrong estimation for the pose orientation. For the two views, the intersection of the final shapes occurs due to incorrect pose estimation. The reconstructed poses and shapes have already been good with four views, which demonstrates that our method can achieve accurate reconstruction for sparse camera settings. Table 1 gives the quantitative evaluation by comparing the position of markers and the corresponding reconstructed vertices on the Fight dataset. It can be observed that the estimation errors gradually decrease as the number of camera views increases. Multi-view provides more useful information than single-view, which helps eliminate inaccurate pose estimation and improve the accuracy of pose and shape estimation, especially for occlusion.

Table 1: Quantitative evaluation for different number of cameras.

<table>
<thead>
<tr>
<th>Number of views</th>
<th>1 view</th>
<th>2 views</th>
<th>4 views</th>
<th>8 views</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (mm)</td>
<td>1549.88</td>
<td>242.27</td>
<td>58.42</td>
<td>48.57</td>
</tr>
<tr>
<td>Std.</td>
<td>2589.18</td>
<td>985.75</td>
<td>177.56</td>
<td>10.06</td>
</tr>
</tbody>
</table>

4.2.2. Tracking

After 2D pose estimation for each person, it is essential to perform multi-person tracking before multi-person 3D pose and shape estimation. If only using temporal tracking, the pose may be lost or wrongly estimated due to occlusion. Hence, we propose to add spatial tracking to track the poses in spatio-temporal domain based on multi-view, not only between two adjacent frames. Figure 6 gives the comparison results of without and with spatial tracking on the Wrestle dataset. As shown in the figure, one of the persons disappears without using spatial tracking, while both poses and shapes of the persons are correctly estimated when the proposed spatio-temporal pose tracking is used.

Figure 6: Comparison results for an image of the Wrestle dataset without (Middle) and with (Right) spatial tracking.

Figure 7 shows some results of without and with multi-person pose tracking on the Crash dataset. It can be seen that there are some very obvious mistakes, such as distorted shapes and wrong poses, without using pose tracking. When we track the poses in spatio-temporal domain, many of the above terrible artifacts are avoided. Quantitative evaluation is given in Table 2 by comparing the position of markers and the corresponding reconstructed vertices on the Fight dataset. It can be seen that the result with pose tracking has smaller error than that without pose tracking. Figure 8 shows more results on the four datasets by projecting the estimated shapes on the captured images. It can be seen that our estimated shapes basically coincide with the images without using the silhouettes.

Table 2: Quantitative evaluation of without tracking (N. track), with temporal tracking (T. track), and with spatio-temporal tracking (S. T. track).

<table>
<thead>
<tr>
<th>Tracking</th>
<th>N. track</th>
<th>T. track</th>
<th>S. T. track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (mm)</td>
<td>214.79</td>
<td>74.95</td>
<td>43.30</td>
</tr>
<tr>
<td>Std.</td>
<td>361.32</td>
<td>45.46</td>
<td>9.45</td>
</tr>
</tbody>
</table>

4.3. Comparisons

Very few works can achieve multi-person 3D pose and shape estimation for closely interacting persons. The only one is proposed by Liu et al. [LGS*13], which need a laser scan to capture a template mesh and manual intervention to rig a skeleton. Moreover, their results depend on the careful segmentation for each person. On the contrast, our method is fully-automatic, fast, and without manual intervention and segmentation. Figure 9 shows the comparison results with the method in [LGS*13]. It can be seen that our method achieves the same level of accuracy for pose and shape estimation as the method in [LGS*13], although lacking of some geometry details. For the first image, we have even more accurate pose estimation result for the right hand of the left person than the method in [LGS*13]. For the last image, we have also more accurate pose estimation for the head of the flying man than the method in [LGS*13]. Table 3 gives quantitative evaluation on the Fight dataset. For error measurement, we similarly calculate the average distance with standard deviation between the markers and the corresponding vertices of the reconstructed model across all 500 frames of the sequence, which is the same as the evaluation method in [LGS*13]. As shown in the table, our method outperforms the method in [LGS*13] on both the average error and the standard deviation. This demonstrates that our method achieves more accurate estimation for poses and shapes than the method in [LGS*13]. Although the method in [LGS*13] has more rich geometry details, the accuracy of pose estimation is lower than our method. Moreover, the reconstructed models of the method in [LGS*13] have...
clenched fists due to using the laser scan. Our approach is conceptually simpler and more accurate without any manual intervention.

We also compare our method with the newest 3D pose and shape estimation method [KBJM18] in Fig. 10. It can be seen that our method achieves more accurate estimation for multi-person poses and shapes. Table 3 shows the quantitative evaluation on the Fight dataset. For the method in [KBJM18], we calculate the average distance with standard deviation between the markers and the corresponding vertices of the reconstructed model across all 500 frames for each camera, and obtain the final mean and standard deviation by averaging the multi-view means and standard deviations. The quantitative result further proves the effectiveness of the proposed method.

Fig. 11 shows some failure examples using our method due to wrong estimation of 2D joints for occlusion and complex motion cases.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean(mm)</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LGS’13]</td>
<td>51.67</td>
<td>23.44</td>
</tr>
<tr>
<td>[KBJM18]</td>
<td>753.69</td>
<td>337.54</td>
</tr>
<tr>
<td>Ours</td>
<td>43.30</td>
<td>9.45</td>
</tr>
</tbody>
</table>

4.4. Running Times

All the experiments are run on a desktop with a 32-core Intel Xeon(R) ES-2620 v4 2.1-GHz CPU, two 16.0-GB RAMs, and two GPUs of NVIDIA GeForce GTX1080Ti. Note that our method does not use GPU acceleration except the 2D pose estimation part. The 2D pose estimation using RMPE [FXTL17] takes about 1.2s per frame, the temporal tracking takes about 0.15s per frame, the spatial tracking takes about 49.5s per frame due to the time-consuming DeepMatching, and the 3D pose and shape estimation using multi-view constraints takes about 2s per frame. The total computation time of a person for a time instance is about 67s, while
Figure 9: Multi-person 3D reconstruction results for four images of the datasets (Top) by using the method in [LGS*13] (Middle) and our method (Bottom).

the running time of the method in [LGS*13] is about 300s except the time of scanning and manual rigging.

5. Conclusions

In this paper, we propose a new markerless multi-person motion capture method to estimate 3D shapes and poses for closely interacting persons from multi-view videos. To estimate more accurate and reliable 3D shape and pose, we design a novel tracking method based on spatio-temporal multi-view information, and combine a skinned multi-person linear model (SMPL) with multi-view constraints which enables our system robust to more complex scenarios. Experimental results show that our method achieves the same results with much less computational time and without manual intervention, compared with the state-of-the-art method.

In future work, we will try to achieve real-time 3D pose and shape estimation by using GPU acceleration, and obtain improved geometry by depth optimization. Besides, body language expression is a key content of human-human interactions, and hence we can estimate the meaning of human interaction by combining pose, shape and body parts, such as faces, hands and feet.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant 61571322, Grant 61771339, Grant 61522111 and Grant 61806054).

References

Figure 11: Examples of failure cases.

British Machine Vision Conference (2013), pp. 45.1–45.11. 3

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

