
 

Abstract—Video based measurement, as one of the most common non-contact measurement methods for 

industrial inspection, has been developed rapidly. Digital video cameras offer the benefit of low cost, high 

automation and are capable to make the simultaneous full-field measurement. This paper focuses on studying 

the micro-vibrational signal extraction for high speed rotating machinery with digital cameras. An improved 

phase based motion extraction and learning based video magnification are proposed for measuring the micro-

vibration with high frequency and small amplitude. The phase based motion extraction is improved by directly 

transforming the phase variations into the displacement without the computation of phase gradient. Furthermore, 

the learning-based motion magnification is utilized to amplify and qualitatively measure the micro-vibration in 

specified frequency bands. The phase-based motion extraction is a quantitative measurement, while the learning-

based video magnification is a qualitative measurement. Experimental results for micro-vibration measurement 

rising from a magnetically suspended motor system validate the effectiveness of the proposed method. 

Index Terms—Non-contact measurement, vibration analysis, vibration measurement, high-speed magnetically suspended 

motor, optical flow.  

Cong Peng1 Member, IEEE, Cong Zeng1, Yangang Wang2, Member IEEE 

1 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China 

2School of Automation, Southeast University, Nanjing, 210096, China 

Phase-based Non-contact Vibration Measurement  
of High Speed Magnetically Suspended Rotor  

Corresponding author: Yangang Wang; postal address: sipailou 2#, Southeast University, Nanjing, China; telephone 

number: 86-15110264815 and E-mail address: ygwangthu@gmail.com. 

This work was supported by the National Natural Science Foundation of China (No. 61703203 and 61806054), Natural 

Science Foundation of Jiangsu Province (BK20170812B and K20180355), Fundamental Research Funds for the Central 

Universities (No. NS2019020) and Foundation of Southeast University (No. 1108000216 and 1108007121). 

The paper has not been submitted to any other journal simultaneously. 



I. INTRODUCTION 

The vibration characterized with high frequency and small amplitude is an important factor affecting the working condition 

and service life of the high speed rotary equipment [1]-[4]. The conventional method to evaluate the vibration performance is 

realized by vibration sensors, such as the accelerometer. Sensors are reasonably arranged on the equipment according to certain 

rules. Through effective incentive method, the structural vibration parameter information (such as natural frequency, vibration 

mode and damping) can be accurately obtained. However, the conventional vibration testing system is complex with low 

spatial resolution. Moreover, the physical properties, such as the quality, stiffness, damping, and natural frequency, can be 

influenced by the addition of sensors, which affects the accuracy and objectivity of testing results.  

Another dominate non-contact vibration measurement strategy, including the laser vibrometer-based and the digital camera-

based measurement method, has attracted much attention due to the increasing requirements of accurate and convenient 

measurement. The laser vibrometer system can measure structural vibration without any mass-loading effects [5]-[7]. In 

addition, high spatial resolution can also be achieved for the scanning laser vibrometer system. However, the laser vibrometer 

system is relatively expensive. Moreover, for structures with large or high-frequency displacements, the measurement results 

from laser vibrometer systems are not always satisfactory. Compared with the high-cost laser device, the vibration 

performance can be measured by the digital camera. The digital image can be used to extract quantitative and qualitative 

information of the vibration. Huang [8] et al. proposed an advanced object-tracking algorithm, called the template-corner 

algorithm. Base on this algorithm, the vibration of wind tunnel can be measured using only one camera. Zhong [9] et al. 

proposed a vibration measurement system based on Non-Projection fringe vision. The system consists of an artificial linear 

varying-density fringe pattern (LVD-FP) as a sensor and a high-speed camera as a detector. It can accurately measure the 

instantaneous angular speed and accurately track the instantaneous speed of rotating machinery. Digital image based 

measurement technology has many advantages, such as non-contact, wide measurement range, full-field measurement, no 

change in the vibration characteristics of the measured object, etc. In addition, various digital image processing methods are 

investigated in order to cooperate with the digital camera.  

Considerable effort has been made to the 3D digital image correlation (DIC) method for camera-based system [10]-[13]. 



Wang [10] et al. built a structural vibration measurement system based on 3D DIC by using single high-speed CMOS camera. 

The system can accurately measure the multi-order natural frequencies of structures and analyze the vibration modes of 

complex structures. German company, Dante, developed a series of measurement systems for structural vibration [11]. 

Electronic speckle pattern interferometry (ESPI) and 3D DIC were combined to measure deformation, strain field and 

vibration data of complex structures. This kind of system was portable, flexible and simple to operate. However, it generally 

required a speckle pattern to mount on the surface of the structure. In addition, the vibration information was obtained through 

a large number of matching calculations. Considering the large calculation cost of 3D DIC, it is not feasible to process the 

collected image data in real time, especially for high frequency. 

In recent years, the researchers attempted to consider the combination of digital cameras with optical flow methods [14]-

[16]. Optical flow method can extract motion information only according to the natural structure of the image without any 

surface preparation. Traditional optical flow method is based on image intensity, which is very sensitive to noise and 

interference. When the scene changes abrupt, it would lead to the error of estimating the motion field. Caetano [17] et al. 

developed a vision system based on the correlation and optical flow method. The vision system was utilized to observe the 

vibration of civil engineering structures and could provide an important data source to achieve a more complete monitoring. 

Aoyama [18] et al. proposed a multithread active vision system that can obtain the optical flow of multiple feature points on 

a bridge model. This enabled simultaneous measurement of vibrations at multiple points on civil engineering structures. A 

high-frame-rate optical flow system [19] was developed to estimate the optical flow at high frame rate via an improved optical 

flow detection algorithm. However, the accuracy measured by the intensity-based optical flow method is relatively low for 

the micro-motion, which is difficult to distinguish from noise. Moreover, the low computational speed of image intensity 

limits its application in practical systems, especially in embedded system.  

Phase-based optical flow method, based on the phase-based computer vision algorithm, is recently proposed and considered 

as one of the most effective vibration measurement method [20]-[26]. Fleet et al. [20][21] introduced the theory of computer 

vision based on phase. Phase-based optical flow method is no longer based on the original pixel strength values, but through 

the analysis of image phase changes to extract motion. The phase information of the image is more robust than the intensity 



of the image due to the change of contrast and scale. Chen et al. [22] extended the phase-based optical flow method to modal 

identification on simple structures, a cantilever beam and a pipe. Sarrafi et al. [24] combined the phase-based optical flow to 

carry out structural health monitoring of wind turbine blades based on vibration. Moreover, phase-based optical flow method 

is also combined with motion magnification technique to generate the color and motion changes that can be observed by the 

naked eye [27]-[32]. Start with the Euler perspective, Wu et al. [26] proposed a method called Eulerian video magnification. 

Spatially filtering the video sequence, then performing time-domain bandpass filtering to extract the interested change signals 

and amplify them. Wadhwa et al. [27] improved this technology and proposed phase-based video motion processing. When 

amplifying the action, the noise will not be amplified, but the noise will be shifted, so that a better amplification effect can be 

achieved. Zhang et al. [30] put forward a method of video acceleration amplification to address the limitation of magnification 

when large motion occurs.  

However, the conventional phase based optical flow used for the previous measured object is not feasible for the micro-

vibration rising from high-speed rotary machines. On one hand, different from the vibrations with low frequency and large 

amplitude in the majority of the measured system, the micro-vibration due to the high-speed rotor characterized with high 

frequency and small amplitude. On the other hand, the phase based optical flow needs the computation of flow vectors and 

phase gradient, which leads to increasing of time complexity and noise sensitivity. Moreover, to the author’s knowledge, there 

have been almost no practical results for the phased based motion extraction method used for the micro-vibration in the high-

speed rotary machines.  

In this work, an improved phase based motion extraction method is proposed to evaluate the micro-vibration rising from 

the high-speed magnetically suspended rotor system. In order to improve signal to noise ratio (SNR), the video downsampling 

and Gaussian blur are introduced in the proposed motion extraction method. Moreover, the learning-based motion 

magnification is cooperated with phase information to amplify the small imperceptible motions in specified frequency bands. 

It is adopted to effectively enables visualization of the micro-vibration. There are three main contributions of the work. First, 

the quantitative and qualitative measurement for rotary machine micro-vibration by phase-based motion extraction. Then, the 

computation cost can reduce since the phase gradient does not need to compute anymore. In addition, the robustness of 



the motion computation is greatly improved since the noise in the phase gradient is removed in theory.  

II. THEORY OF VIBRATION FOR ROTATING MACHINERY 

In this section, we first develop the dynamic model of the magnetic bearing-rotor system. Then we analyze the micro-

vibration source and add the main vibration source to obtain the complete dynamic model of the bearing-rotor system. The 

dynamics analysis of the magnetic bearing-rotor system is the base for the vibration measurement. 

A. Dynamics modeling of the rotating machinery 

The magnetically suspended rotor is considered in this work as the typical high-speed rotating machinery. According to the 

Newton’s law, the dynamical model of the magnetic bearing-rotor system is presented as, 

 𝑀�̈�𝑖 + 𝐺�̇�𝑖 = 𝐹 (1) 

where 𝐹 is the generalized force, 𝑀 is the diagonal mass matrix, and 𝐺 is skew-symmetric gyroscopic matrix. To describe 

the dynamics of the rotor, it is convenient to introduce the generalized coordinates 𝜉௚, the bearing coordinates 𝜉௕, and the 

sensor coordinates 𝜉௦. The coordinates can be transformed and have the relationship as follows, 

 𝜉௚ = 𝑇௕𝜉௕ (2) 

 𝜉௚ = 𝑇௦𝜉௦ (3) 

where 𝑇௕  and 𝑇௦ are the transformation matrices. Then the generalized force vector 𝐹 can be obtained from the magnetic 

force vector 𝐹௠ by the coordinates transformation 

 𝐹 = 𝑇𝑏𝐹𝑚 (4) 

where 𝐹௠ is the magnetic force and can be linearized in the neighborhood of an operating point as 

 𝐹௠ = 𝐾క𝜉௕ + 𝐾௜𝑖 (5) 

where 𝐾క and 𝐾௜ are the parameter matrices for displacement stiffness and current stiffness, 𝑖 is the control current 

for the active magnetic bearings.  

In the work, in order to stabilize the rotor system, the decoupled PD controller and the cross feedback algorithm are 

applied as composite control system for the active magnetic bearing. Then the control currents are presented as, 



 𝑖 = −𝐾஺𝐾ௌ𝐷௜ൣ𝐾௉𝜉௚ + 𝐾஽�̇�௚൧ (6) 

where 𝐾௉ and 𝐾஽ are the proportional and derivative gain matrices. 𝐾஺ and 𝐾ௌ are the power amplifier and sensor 

gain matrices. 𝐷௜ is the current distribution matrix, which converts the control current from the controller into the 

currents acting on the magnetic bearing coils. It is noted that 𝐷௜ is a pseudoinverse of the coordinates transformation 

𝑇௕. The pseudoinverse is calculated by the Moore-Penrose matrix inverse, which is given as,  

 𝐷௜ = 𝑇௕
்൫𝑇௕𝑇௕

்൯
ିଵ

 (7) 

Substituting (1), (2), and (4)-(7) into (3), the complete dynamic model of the closed-loop magnetic bearing-rotor 

system is  

Mξ̈𝑖 + 𝐺�̇�𝑖 + 𝑇𝑏𝐾𝑖𝐾𝐴𝐾𝑆𝑇𝑏
𝑇

ቀ𝑇𝑏𝑇𝑏
𝑇

ቁ
−1

𝐾𝐷�̇�𝑔 + ൤𝑇𝑏𝐾𝑖𝐾𝐴𝐾𝑆𝑇𝑏
𝑇

ቀ𝑇𝑏𝑇𝑏
𝑇

ቁ
−1

𝐾𝑃 − 𝑇𝑏𝐾𝜉𝑇𝑏
𝑇

ቀ𝑇𝑏𝑇𝑏
𝑇

ቁ
−1

൨ 𝜉𝑔 (8) 

B. Micro-vibration analysis 

The main source causing the micro-vibrations in the rotating machinery is the rotor mass imbalance. The mass imbalance 

is composed of the static imbalance and the dynamic imbalance. The static imbalance leads to the offset of the mass center to 

the geometric center and generates the synchronous micro-vibration forces. On the other hand, the dynamic imbalance, which 

causes the synchronous micro-vibration torques, results in the misalignment of the principal axis and the geometric axis of the 

rotor. That is, both the static imbalance and dynamic imbalance are caused by the non-colinear relationship of the geometric 

axis and the inertial axis, which is shown in Fig. 1. 

 

Fig. 1 The non-colinear relationship between the geometric axis and the inertial axis. 

In order to describe the mass imbalance disturbance, the displacement of the geometric axis can be presented by the 

inertial axis with the misalignment component, 



 𝜉௚ = 𝜉௜ − Δ𝜉 (9) 

with 

 Δ𝜉 = 𝜆𝑐𝑜𝑠(Ω𝑡 + 𝜑) (10) 

where 𝜆 and 𝜑 are the amplitude and the initial phase of the static imbalance, respectively. 

Substituting (9) into (8), the complete micro-vibration dynamical model for the magnetic bearing-rotor is presented as 

Mξ̈௜ + 𝐺𝜉௜̇ + 𝑇௕𝐾௜𝐾஺𝐾ௌ𝑇௕
்൫𝑇௕𝑇௕

்൯
ିଵ

𝐾஽൫𝜉௜̇ − Δ𝜉̇൯ + ቂ𝑇௕𝐾௜𝐾஺𝐾ௌ𝑇௕
்൫𝑇௕𝑇௕

்൯
ିଵ

𝐾௉ − 𝑇௕𝐾క𝑇௕
்൫𝑇௕𝑇௕

்൯
ିଵ

ቃ ⋅ (𝜉௜ − Δ𝜉) = 0

  (11) 

It can be observed that the mass imbalance enters the closed-loop system inevitably. The micro-vibration of the rotating 

machinery is characterized with the rotational speed. Thus, the frequency of the micro-vibration is varied with the rotating 

speed. In addition, the measurement of magnetic bearing rotor system is different from that of the traditional bearing rotor 

system. The vibration of traditional bearing rotor system is caused by the lubricating oil in the bearing. Its harmonic 

characteristics are very messy and irregular, which is not conducive to the performance verification of the video-based 

measurement method. Compared to the traditional bearing rotor system, the vibration characteristics of magnetic bearing rotor 

system are quite clear due to the definite vibration sources. 

 

III. PHASE-BASED MOTION EXTRACTION FOR VIBRATION MEASUREMENT                
AND MOTION MAGNIFICATION 

In this section, an improved phase-based displacement extraction algorithm is proposed to extract the vibration 

displacement signal of the magnetically suspended motor. Fig. 2 shows the overall workflow of this work. First, the motion 

in the spatial domain of the image can be extracted by calculating the local phase changes in the frequency domain. Then, in 

order to visualize the vibration process, the learning-based motion magnification technique is used to magnify the very small 

motion with high frequency.  



 
Fig. 2 Workflow of video-based vibration measurement. 

A. Phase-based Motion Extraction 

Video consists of a series of images. Images usually contain two domains, the spatial domain and the temporal domain. 

The spatial domain corresponds to the intensity value of each pixel in the single image, and the temporal domain corresponds 

to the relationship between the images of video and time. In addition, images in spatial domain can be decomposed into 

amplitude signals and phase signals by specific filters. This is similar to the process of decomposing accelerometer signals 

using Fourier transform or wavelet transform. As indicated by the Fourier transform theorem, any motion in the spatial domain 

causes the variations of phase in frequency domain. In order to estimate local motion, the 2D Gabor filter is utilized to 

transform the images of video in spatial domain into the frequency domain. 

For a video,  0, ,I x y t  denotes the frame of the video at the time 0t  with the resolution of M N . x  and y  

represent the horizontal and vertical pixel coordinates of the image (an image can be regarded as a two-dimensional matrix, 

each element of the matrix is called pixel). The local amplitude and local phase information of the image is computed by 

spatially band passing with the Gabor filter as follows, 

 𝐴ఏ(𝑥, 𝑦, 𝑡଴)𝑒𝑥𝑝൫𝑖𝜙ఏ(𝑥, 𝑦, 𝑡଴)൯ = 𝐼(𝑥, 𝑦, 𝑡଴)⨂(𝐺ఏ + 𝑖𝐻ఏ) (12) 

where  0, ,A x y t  represents the spatial local amplitude and  0, ,x y t  represents the spatial local phase.   denotes 

the convolution operator. G  and H  are the real and imaginary parts of the Gabor filter respectively as, 

 ቐ
𝐺ఏ =  𝑒𝑥𝑝 ቀ−

௫ഇ
మାఊమ௬ഇ

మ

ଶఙమ ቁ cos ቀ2𝜋
௫ഇ

ఒ
+ 𝜓ቁ

𝐻ఏ =  𝑒𝑥𝑝 ቀ−
௫ഇ

మାఊమ௬ഇ
మ

ଶఙమ ቁ sin ቀ2𝜋
௫ഇ

ఒ
+ 𝜓ቁ

 (13) 

where cos sinx x y     and sin cosy x y     .   determines the orientation of the Gabor filter, ranges from 0  

to 360 . 0  represents the horizontal direction and 90  represents the vertical direction.   and   denote the wavelet 



parameter and phase offset of the cosine function.   denotes the standard deviation of the Gaussian function, which 

determines the size of the acceptable region of the Gabor filter kernel. The 2D Gabor filter can also be expressed as, 

 g(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = 𝑒𝑥𝑝 ቀ−
௫ഇ

మାఊమ௬ഇ
మ

ଶఙమ ቁ 𝑒𝑥𝑝 ൬𝑖 ቀ2𝜋
௫ഇ

ఒ
+ 𝜓ቁ൰ (14) 

Then we show how phase signals can be converted into displacement signals by spatial band passing with Gabor filters.  

Equation (12) can also be defined by the integral, 

 𝐹(𝑥, 𝑦, 𝑡) = ∬ 𝐼(𝑢, 𝑣, 𝑡)𝑔(𝑥 − 𝑢, 𝑦 − 𝑣; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾)
ାஶ

ିஶ
𝑑𝑢𝑑𝑣 (15) 

where  , ,F x y t  denotes the frequency domain of the frame at time 𝑡.  g   function represents the Gabor filter with the 

parameter  , , , , , ,x y      .  

Fig. 3 shows the real and imaginary pairs of 2D Gabor filter oriented at 0°, 45°, 90° and 135°.  

 

Fig. 3 Gabor filter in four different orientations. (a) The real parts. (b) The imaginary parts. 

 

Assuming that 𝐼(𝑥, 𝑦, 𝑡଴) as the image intensity of the frame at the time 𝑡଴ and spatial location (𝑥, 𝑦). The local motion 

(∆𝑥, ∆𝑦)  occurs in the frame, then the image intensity of the next frame at the time 𝑡଴ + ∆𝑡  is expressed as 

𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡଴ + ∆𝑡). 

For a specific case, θ = 0 is selected as the orientation of the Gabor filter, and the motion in horizontal direction will be 

extracted. The spatial variables then can be simplified to 𝑥ఏ = x and 𝑦ఏ = y. The frame at time 𝑡 and the frame at time 

𝑡 + ∆𝑡 can be transformed into the frequency domain as, 

 𝐹(𝑥, 𝑦, 𝑡଴) = ∬ 𝐼(𝑢, 𝑣, 𝑡)𝑒
൬ି

(ೣషೠ)మశംమ(೤షೡ)మ

మ഑మ ൰
𝑒௜ቀଶగ

ೣషೠ

ഊ
ାటቁାஶ

ିஶ
𝑑𝑢𝑑𝑣 (16) 

 𝐹(𝑥, 𝑦, 𝑡଴ + 𝛥𝑡) = ∬ 𝐼(𝑢 + 𝛥𝑥, 𝑣 + 𝛥𝑦, 𝑡 + 𝛥𝑡)𝑒
൬ି

(ೣషೠష೩ )మశംమ(೤షೡష೩ )మ

మ഑మ ൰
⋅ 𝑒௜ቀଶగ

ೣషೠష೩

ഊ
ାటቁାஶ

ିஶ
𝑑(𝑢 + 𝛥𝑥)𝑑(𝑣 + 𝛥𝑦) (17) 

Equation (16) and (17) can be reorganized by putting the phase term which are independent of integral variables outside 



the integral. The new representation is expressed as, 

 𝐹(𝑥, 𝑦, 𝑡଴) = 𝑒௜ቀିଶగ
ೣ

ഊ
ቁ

∬ 𝐼(𝑢, 𝑣, 𝑡)𝑒
൬ି

(ೣషೠ)మశംమ(೤షೡ)మ

మ഑మ ൰
𝑒௜ቀଶగ

ೠ

ഊ
ାటቁାஶ

ିஶ
𝑑𝑢𝑑𝑣 (18) 

 𝐹(𝑥, 𝑦, 𝑡଴ + 𝛥𝑡) = 𝑒௜ቀିଶగ
ೣశ೩ೣ

ഊ
ቁ

∬ 𝐼(𝑢 + 𝛥𝑥, 𝑣 + 𝛥𝑦, 𝑡 + 𝛥𝑡) ⋅ 𝑒
൬ି

(ೣషೠష೩ )మశംమ(೤షೡష೩ )మ

మ഑మ ൰
𝑒௜ቀଶగ

ೠ

ഊ
ାటቁାஶ

ିஶ
𝑑𝑢𝑑𝑣 (19) 

Now the phase terms being integrated of (18) and (19) are both 𝑒௜ቀଶగ
ೠ

ഊ
ାటቁ. Therefore, the final definite integral of them is 

identical, which are expressed as φ′. Then, compute the phase angle of (18) and (19), 

 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴)൯ = −2𝜋
௫

ఒ
+ 𝜑′ (20) 

 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴ + 𝛥𝑡)൯ = −2𝜋
௫ା௱௫

ఒ
+ 𝜑′ (21) 

The phase difference is presented as, 

 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴ + 𝛥𝑡)൯ − 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴)൯ = 2𝜋
௱௫

ఒ
 (22) 

As can be observed from (22), it is easy to see that the horizontal motion Δx is proportional to the phase difference. 

Similarly, the motion in other directions are also related to phase differences only by changing the orientation θ  of 

Gabor filter.  

However, the conventional phase-based optical flow computes the phase gradient of a spatially bandpassed video to estimate 

the motion field. Following the Taylor expansion, 

 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴)൯/𝜑𝑡 =
డఝ

డ௫
Δ𝑥 +

డఝ

డ௬
Δ𝑦 (23) 

Considering the horizontal direction only, which assumes Δ𝑦 = 0, the phase-based optical flow is, 

 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴ + 𝛥𝑡)൯ − 𝜑൫𝐹(𝑥, 𝑦, 𝑡଴)൯ =
డఝ

డ௫
∆𝑥 (24) 

Different from existing phase-based optical flow method, we make a further step for the above general Taylor expansion 

equation. Specifically, a concrete 𝜑 is used, i.e., the 2D Gabor filter, to obtain a more detailed result, as shown in (22). It is 

noted that 
డఝ

డ௫
 in the existing phase-based optical-flow is replaced by a constant value 

ଶగ

ఒ
. It does not have to compute the 

phase gradient in the whole image while the horizontal motion Δx is directly obtained via the proportion to the temporal 

phase differences. 

To improve signal to noise ratio, local amplitude is used by performing a weighted spatial Gaussian blur on the phases. As 

noise is always low amplitude phase signal, to reduce these meaningless signals, local amplitude is used by performing a 



weighted spatial Gaussian blur on the phases. For the Nth frame, the weighted phase signal φ′ே can be computed as, 

 𝜑′ே = (𝜑ே𝐴ே) ⊗ ℎ(𝑥, 𝑦)/𝐴ே ⊗ ℎ(𝑥, 𝑦) (25) 

where 𝐴ே and 𝜑ே represent the amplitude and phase signal of the Nth frame respectively. ℎ(𝑥, 𝑦) is 2D Gauss function, 

which can be expressed as, 

 ℎ(𝑥, 𝑦) = 𝑒𝑥𝑝[−(𝑥ଶ + 𝑦ଶ)/𝜌ଶ] (26) 

The standard deviation of Gaussian filter 𝜌 represents the spatial domain filter widths. The larger the standard deviation, 

the wider the 2D Gauss image is and the better the filtering effect achieves. This step incurs a small computational cost, but 

improves the signal-to-noise ratio (SNR) and lowers the noise floor, which can reflect the real signal more. 

B. Learning-based Motion Magnification 

Learning-based motion magnification is an algorithm for amplifying the visualization of small motion in videos using 

convolution neural network. Previous motion magnification techniques are based on hand-designed filters, such as complex 

steerable pyramids[27] or Reisz pyramids[28], which may not be optimal. The objective of learning-based motion 

magnification is to learn a set of filters directly from examples that can extract the motion signals and then manipulate them 

to produce magnified frames. In the following, some of important details are described. 

To explain the motion magnification problem, we consider a simple case of 1D signal 𝐼(𝑥, 𝑡) = 𝑓൫𝑥 + 𝛿(𝑥, 𝑡)൯ at position 

𝑥 and time 𝑡, with the motion 𝛿(𝑥, 𝑡). The magnified signal 𝐼ሚ(𝑥, 𝑡) can be expressed as, 

 𝐼ሚ(𝑥, 𝑡) = 𝑓൫𝑥 + (1 + 𝛼)𝛿(𝑥, 𝑡)൯   (27) 

for the magnification factor 𝛼. To select motion in specify frequency band, a temporal bandpass filter 𝐵(∙) is used. Then we 

can amplify the bandpass signal. Fig. 4 illustrates the convolution neural network, which consists of three parts, encoder, 

manipulator and decoder. 



 

Fig. 4 The overview of magnification network architecture. 

 

The encoder can extract motion representation 𝑀ଵ  for the first frame and 𝑀ଶ  for the second frame. The manipulator 

extracted the motion between two given frames, and multiplied by magnification factor α, generate motion magnification 

representation 𝑀ଶ
෪ . To improve the quality of the result, set some non-linearity in the manipulator, 

 𝑀ଶ
෪ = 𝑀ଵ + 𝑟 ൫𝛼 ∙ 𝑓(𝑀ଶ − 𝑀ଵ )൯ (28) 

where 𝑓(∙) is expressed as a convolution with 3×3 kernel size and one stride with Rectified linear unit (ReLU) activation 

function, and 𝑟(∙) is a 3 × 3 convolution followed by a 3 × 3 residual block.  

The motion representation is linear in displacement signal. For the given motion representation 𝑀(𝑡) at time 𝑡, we isolate 

the motion of interest with a temporal bandpass filter 𝐵(∙). Amplified that bandpass signal by the magnification factor 𝛼, 

then add it to the motion 𝑀(𝑡) to get the amplified temporal-filtering motion representation, 

 𝑀௧௘௠௣௢௥௔௟ = 𝑀(𝑡) + 𝛼 ∙ 𝐵 ൫𝑀(𝑡)൯ (29) 

Finally, the decoder reconstructs the modified representation into the resulting motion magnified frames. 

Obtaining the real motion magnified dataset is difficult. Oh et al. [32] designed a synthetic dataset that capture small motion 

well. The texture of synthetic datasets obtained by using real image datasets. The foreground objects come from PASCAL 

VOC dataset [33]. The image of MS COCO dataset [34] is used as background, and the foreground objects are pasted directly 

onto the background. The background and the direction of each foreground object are random to simulate local motion. To 

improve the robustness of the neural network, the intensity of some frames is perturbed artificially. Then some data with low 

contrast and low texture feature are designed to improve the effect of neural network on low quality videos. This synthetic 

ground-truth magnified video pairs are available online.  

The motion magnification neural network follows supervised training. The loss function is given as,  



 𝐿 = 𝐿(𝑌, 𝑌′) + 𝜆൫𝐿(𝑇௔, 𝑇௕) + 𝐿(𝑇′௕ , 𝑇௒ᇱ) + 𝐿(𝑀௔, 𝑀′௕)൯ (30) 

where 𝐿  represents the 𝐿ଵ  norm. Y  is the real motion magnified video, 𝑌′  is the magnified video output from neural 

network. 𝑇௔ ,  𝑇௕   is the texture representation of reference frame and motion frame respectively. 𝑇′௕   is the texture 

representation of perturbed motion frame, 𝑇௒ᇱ is the texture representation of perturbed motion magnification frame. 𝑀௔ is 

the motion representation of motion frame, 𝑀′௕ is the motion representation of setting perturbed motion frame. 𝜆 is the 

regularization weight, there is set to 0.1. The whole model is trained by minimizing the loss function. 

IV. EXPERIMENAL SETUP 

Fig. 5 shows the side view of the experiment scene. The vison measurement system is made of a high-speed camera mounted 

with a high-quality optical lens (manufacturer Nikon, focal length 20mm), light sources and a computer for data storage. The 

camera used in this paper is the 12M180MCX high-speed camera of IO Industries Inc. It can adjust the size of any pixel range 

below the highest resolution 4096×3076. When the output format and the resolution is reduced, the minimum frame period 

of the camera (maximum frame rate) can be increased and the range for the exposure times is also re-calculated. 

The camera is fixed by a tripod and adjusted to the appropriate viewing position. The vertical distance between the camera 

and the motor is about 0.8m. Meanwhile, the LED lamp is used to illuminate the magnetically suspended motor to provide 

sufficient brightness conditions and improve the quality of the captured images. When collecting images, the horizontal 

distance between the LED lamp and the motor is 2.3m, and the height of the lamp is 1.5m above the ground. In this 

location, the lamp can illuminate the whole motor. A certain brightness is necessary for the image capture. When the 

light strength is low, the overall effect of the image is dim and the contrast between foreground and background is not 

obvious enough.  



 

Fig. 5 Experiment setup. (a) The side view of the experiment scene. (b) The control system for the magnetically suspended motor. (c) The enlarged motor 

scene. (d) The screenshot of the camera. 

 

The probe of the acceleration sensor is vertically installed on the surface of the motor according to its identification direction. 

Since the motor is necessary to visualize the process of object motion. The magnetic bearing control system is used to stabilize 

the rotor suspension, and the motor driver is used to rotate the motor and adjust the rotor speed. Fig. 5(b) shows the control 

system for the magnetically suspended motor, and Fig. 5(c) shows the enlarged motor scene. The rotor speed of the motor is 

set to 6000rpm, 9000rpm, 12000rpm and 15000rpm (revolutions per minute) in turn. Correspondingly, the frame rate of the 

high-speed camera is set up to 300fps, 500fps, 600fps and 800 fps (frames per second) to record the sequence of images in 

turn. All the videos are captured at a resolution of 1024×1024 pixels. An example screenshot from the recorded video is given 

in Fig. 5(d). 

V. EXPERIMENTAL RESULTS 

The video sequences of motor at different rotor speeds are captured. We compute the displacement signals and then 

transform the displacement signals into acceleration signals. The fast Fourier transform (FFT) is performed on the acceleration 

signal to obtain a frequency spectrum, which is compared with the measurement result of accelerometer. Methods for 

improving the SNR are discussed. Video magnification is used to visualize micro-vibration. 

A. Vibration Analysis 

In order to investigate the performance of the camera-based measurement, the vibration frequencies of the magnetically 



suspended motor are simultaneously measured by traditional accelerometer and high-speed camera. The accelerometer is 

attached to the side of the motor shell to measure the radial vibration of the magnetically suspended motor. The rotor speed of 

the motor is set to 6000rpm, 9000rpm, 12000rpm and 15000rpm respectively. The acceleration signals obtained from the 

accelerometer were transformed into the frequency domain in order to obtain frequency spectrum by performing the fast 

Fourier transform (FFT). 

Fig. 6(a1) shows the measured acceleration signals and the results of the FFT analysis from the accelerometer at four rotor 

speed cases. According to Fig. 6(b1), the peak frequency of motor is 100Hz, 150Hz, 200Hz and 250Hz respectively at the 

rotor speed of 6000rpm, 9000rpm, 12000rpm and 15000rpm. The vibration amplitude of the peak frequencies are 0.12804

2/m s , 0.12116 2/m s , 0.05748 2/m s and 0.08876 2/m s  respectively. This frequency is the synchronous vibration signal 

caused by rotor mass imbalance, as the offset of geometric center and the inertial center. 

Fig. 6(a2) and Fig. 6(b2) shows the acceleration signal and the FFT result by the video based measurement. All the videos 

were captured at the frame rate of 1000fps and measured up to 1s. For an image with the resolution of M N , downsampling 

is done by a factor of s  to obtain an image I  with the resolution of / /M s N s . The neighboring pixels in the size of 

s s  is averaged. So the pixels in the s s  window of the original image become one pixel. The videos are downsampled 

by a factor of s  prior to process to change the scale. With video downsampling, the processing time is reduced and the SNR 

is improved, which is discussed in detail in the following section. In areas with greater texture or contrast, such as edges, the 

displacement signals are less noisy. The pixels of the edge of the target are selected as the measurement points. From the 

downsampled video, the local phase changes between the Nth frame and the first frame oriented in the horizontal direction for 

these pixels are recorded. We use spatial Gaussian blur to increase SNR. The standard deviation of Gaussian blur is set to 5. 

The local phase variations correspond to the displacement signals in units of pixels. Calculate the scale factor of the physical 

size and pixel width of the target at the same depth in the video frame. The target is 212 pixels tall and 502 pixels wide in the 

video frame, with 0.189 millimeters per pixel. So the scale factor in this experiment is 0.189. The displacement in units of 

pixels can be converted to units of millimeters by multiplying this scale factor. Dividing the displacement signals by the 

number of measurement pixels to obtain the average displacement signal. Laplacian of the Gaussian (LOG) operator is 



imposed on the average displacement signal to recover acceleration signal. Transform the acceleration signal to the frequency 

response signal using the fast Fourier transform. 

 
Fig. 6 Vibration measurement of the magnetically suspended rotor at 6000, 9000, 12000, 15000rpm. (a1) The acceleration signal by accelerometer in time 

domain. (b1) The acceleration signal by accelerometer in frequency domain. (a2) The acceleration signal by camera in time domain. (b2) The acceleration 

signal by camera in frequency domain. 

 

It can be clearly seen from Fig. 6(b2) that the peak frequencies of 100Hz, 150Hz, 200Hz and 250Hz correspond to 6000rpm, 

9000rpm, 12000rpm and 15000rpm were detected, which are consistent with the accelerometer measurement. The vibration 

amplitude of the peak frequencies from the camera are 0.12173 2/m s  , 0.11722 2/m s  , 0.06214 2/m s  and 0.09381 2/m s  

respectively, which is close to that from the accelerometer. This confirms that the vibration frequency of high-speed rotating 



engineering structures can be accurately measured without the need of conventional accelerometers. 

When measuring the vibration of the motor at the rotor speed of 6000rpm. The camera was capable of discerning the 

vibration of the first two peak frequencies of the motor at 100Hz and 300Hz. In this study, due to the limitation of camera 

frame rate, it is impossible to obtain the higher order frequency doubling vibration signal of motor. If the camera with higher 

sampling frequency is used, the higher order vibration frequency of the structure can be obtained in principle. 

B. Comparisons with 2D DIC 

Then, an experiment is formulated to make a comparison between the proposed technique and the state-of-the-art approach, 

in order to validate the performance of the proposed phase-based measurement method. The pixels on the edge of the target 

are selected as the measurement points. We measure the displacement signals of the measurement points by applying the 2D 

Digital Image Correlation and the proposed phase-based motion extraction method to the images of the magnetically 

suspended motor at 6000rpm. The displacement in units of pixels can be converted to units of millimeters by multiplying the 

scale factor. Then, the average displacement signals can be converted into acceleration information in order to describe the 

vibration. Fig. 7 shows the acceleration signal and the FFT result by the accelerometer, the proposed phase-based motion 

extraction method and the 2D DIC. 

 

Fig. 7 Vibration measurement of the magnetically suspended rotor at 6000 rpm. (a1) The acceleration signal by accelerometer in time domain. (b1) The 

acceleration signal by accelerometer in frequency domain. (a2) The acceleration signal by the proposed phase-based extraction method in time domain. (b2) 

The acceleration signal by the proposed phase-based extraction method in frequency domain. (a3) The acceleration signal by 2D DIC in time domain. (b3) 

The acceleration signal by 2D DIC in frequency domain. 

 



As can be seen in Fig. 7 (a3) and Fig. 7 (b3), both time-domain signal and frequency-domain signal measured by the 2D 

DIC do not agree with the predicted results. It can be clearly seen from Fig. 7 (b3) that the first peak frequency measured by 

the 2D DIC is 100Hz, while the second peak frequency cannot be accurately measured. The measured frequency spectrum 

contains a lot of noises between 200Hz and 500Hz. However, by the proposed phase-based extraction method (shown in Fig. 

7 (b2)), the first peak frequency 100Hz and the second peak frequency 300Hz can be accurately measured with the low noise 

floor. It can be verified that the accuracy measured by the 2D DIC method is relatively low for the micro-motion, which is 

difficult to distinguish from noise. And our method is more accurate for the micro-motion measurement. 

In addition, we compare the processing time of 2D DIC and our phase-based method for the same video (resolution, 1024

 1024; frame rate, 500fps; recording time, 1 second). The processing time of our method is 124.34s, while the processing 

time of 2D DIC is 970.11s. This verifies that our method also greatly reduces the computation time. 

C. Gaussian Blur and Video Down sampling Comparisons 

The measured acceleration signal in frequency domain from the camera measurement has a large noise floor. Changing the 

sigma of Gaussian filter or downsampling video at different scales may increase the SNR. The comparisons are made to 

determine the effect of these factors mentioned above on the noise floor and SNR of the measured spectrum. 

Fig. 8 shows the comparison of the effects of the Gaussian blur on the measured spectrum. Based on the measurement 

results at 6000rpm, the comparisons are made to set the sigma of Gaussian blur to 5, 10, 20. With the increase of standard 

deviation, the noise floor of vibration signals gradually decreases while preserving the peak frequency. 

 

Fig. 8 Comparison of the effects of the standard deviation of Gaussian blur on the acceleration signal in frequency domain. 

 

Fig. 9 shows the comparison of measured spectrum at different scales for downsampling. Previously, the video is 



downsampled by a factor of two in each dimension. Now for comparison, downsampling each dimension of the video four 

times or eight times. From the comparison, more spatial downsampling can significantly lower the noise floor and improve 

the SNR of the measured frequency spectrum without changing the amplitude of vibration peak. More spatial downsampling 

can reduce the processing time at the same time. 

 

Fig. 9 Comparison of the effects of the video dawnsampling on the acceleration signal in frequency domain. 

D. Vibration Visualization 

The learning-based motion magnification algorithm is applied to the original captured sequence of images to visualize the 

micro-vibration of motor. To identify the changes in the resonant frequencies, the center frequencies for motion magnification 

correspond to the resonant frequencies at different rotor speed measured in previous section. All the width of the filters are 

selected as 10 Hz and all the amplification factor are set as 20. With specific frequency bands of 95-105 Hz, 145-155 Hz, 195-

205 Hz and 245-255 Hz for the sequence of videos of the magnetically suspended motor rotating at 6000rpm, 9000rpm, 

12000rpm, 15000rpm, we get the magnified motion at the selected resonant frequency. 

For better visualization, we paint a high contrast marker on the surface of motor end cover. Take the motion magnified 

video at 6000 rpm in frequency band of 95-105 Hz as an example, the screenshots of the marker are shown in Fig. 10(a). 

Select a region of interest around the marker, as shown in Fig. 10(b1) and Fig. 10(c1). Fig. 10(b2) and Fig. 10(c2) shows a 

spatiotemporal y-t slice of the video of the single column pixels (the red line on the region of interest) for the (b2) original 

video frames, and (c2) the motion magnification video. 



 
Fig. 10 Motion magnification of the micro-vibration. (a) One of screenshots of captured video. (b1) A region of interest around the marker of the original 

video. (b2) A spatiotemporal y-t slice of the original video along the red line marked on the region of interest. (c1) A region of interest around the marker of 

the magnified video. (c2) A spatiotemporal y-t slice of the magnified video along the red line marked on the region of interest. 

 

In the original video, the micro-vibration is invisible, but in the magnified video, the vibration is clear to see. Learning-

based motion magnification successfully reveals the motion changes that can not be seen with the naked eye in the video. 

Through this technology, the effect of visual enhancement can be achieved, and valuable information can be excavated. In 

conclusion, the quantitative and qualitative measurement is implemented respectively by the phase-based motion extraction 

and the learning-based video magnification. 

VI. CONCLUSION 

This paper focuses on the problem of vibration extraction for rotating machinery via a camera-based non-contact 

measurement. The quantitative and qualitative measurement are studied for a high-speed magnetically suspended motor. An 

improved phase-based motion extraction method is applied to quantitative measurement of micro-vibration characteristics. In 

addition, learning-based motion magnification is employed to visualize the micro-vibration which is invisible to the naked 

eye. We acquire the videos of motor rotating at 6000 rpm, 9000 rpm, 12000 rpm and 15000 rpm, respectively. The motion 

power spectrums for the acceleration signals are computed and the main synchronous vibration frequency response signals 

are 100 Hz, 150 Hz, 200 Hz and 250 Hz, respectively. It closely matches those measured signals by the accelerometer. In the 

future work, the proposed phase-based vibration measurement can be researched to apply for more multipoint measurement 

situation.  
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