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Abstract— In this paper, we propose a novel method for
automatic depth estimation from color images using parameter
transfer. By modeling the correlation between color images and
their depth maps with a set of parameters, we get a database of
parameter sets. Given an input image, we extract the high-level
features to find the best matched image sets from the database.
Then the set of parameters corresponding to the best match are
used to estimate the depth of the input image. Compared with
the past learning-based methods, our trained model consists only
of trained features and parameter sets, which occupy little space.
We evaluate our depth estimation method on several benchmark
RGB-D (RGB + depth) data sets. The experimental results are
comparable to the state-of-the-art results, while the model size is
very small and very suitable for mobile devices, demonstrating
the promising performance of our proposed method.

Index Terms— 3D reconstruction, depth estimation, parameter
transfer.

I. INTRODUCTION

IMAGES captured with conventional cameras lose the depth
information of the scene. However, scene depth is of great

importance for many computer vision tasks. 3D applications,
like 3D reconstruction for scenes (e.g., Street View on
Google Maps), robot navigation, 3D videos, and free-view
video [1], [2], all rely on scene depth. Depth information can
also be useful for 2D applications, such as image enhancing [3]
and scene recognition [4]. Recent RGB-D imaging devices
like Kinect are greatly limited to the perceptive range and
depth resolution. Neither can extract depth for the existing
2D images. Therefore, depth estimation from color images
has been a useful research subject.

In this paper, we propose a novel depth estimation method
to generate depth maps from single still images. Our method
applies to arbitrary color images. We build the connection
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between image and depth with a set of parameters.
A parameter set database is constructed and the parameter sets
are transferred to input images to get the corresponding depth
maps. Some estimation results are shown in Fig. 1.

As a reminder, this paper is organized as follows.
In Section II, the related techniques are surveyed.
In Section III, we introduce our proposed depth estimation by
parameter transfer (DEPT) method in detail. We demonstrate
our method on the RGB-D benchmark data sets in Section IV.
Finally, we conclude this paper in Section V.

II. RELATED WORKS

In this section, we introduce the techniques related to this
paper, which are, respectively, depth estimation from a single
image and parameter transfer.

A. Depth Estimation From Single Images

The reason why depth estimation from a single image is
possible lies in that there are some monocular depth cues
in a 2D image. Some of these cues are inferred from local
properties like color, shading, haze, defocus, texture variations
and gradients, and occlusions. Global cues are also crucial
to inferring depth, as the ability humans have. Therefore,
integrating local and global cues of a single image to estimate
depth is reasonable.

There are semiautomatic and automatic methods for depth
estimation from single images. Horry et al. [5] propose tour
into the picture, whereby the user interactively adds planes to
an image to make animation. The work of Zhang et al. [6]
requires the user to add constraints manually to images to
estimate depth.

Automatic methods for single image depth estimation come
up in recent years. Hoiem et al. [7] propose automatic photo
popup, which reconstructs an outdoor image using assumed
planar surfaces of it. Delage et al. [8] develop a Bayesian
framework applied to indoor scenes. Saxena et al. [9] pro-
pose a supervised learning approach, using a discriminatively
trained Markov random field that incorporates multiscale local
and global image features. Then, they improve this method
in [10]. After that, depth estimation from predicted semantic
labels is proposed by Liu et al. [11]. A more sophisticated
model called feedback-enabled cascaded classification model
is proposed by Li et al. [12]. One typical depth estimation
method is depth transfer, developed by Karsch et al. [13]. This
method first builds large-scale RGB-D images and features
database and then acquires the depth of the input image by
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Fig. 1. Selected images and corresponding depth maps estimated by DEPT. The darker the red is, the further (from the imaging device) the objects are.
The darker the blue is, the closer the objects are. (a) Test images. (b) Estimated depth maps by DEPT.

transferring the depth of several similar images after warping
and optimizing procedures.

There are several recent works that try to solve the depth
estimation problem and semantic segmentation problem unit-
edly. Ladicky et al. [14] propose to predict pixelwise semantic
class labels to improve both depth estimation and seman-
tic segmentation performance. Eigen et al. [15], [16] use
a multiscale convolutional architecture to refine local depth
prediction with global information. Wang et al. [17] propose
to decompose the image into local segments for region-level
depth and semantic prediction under the guidance of global
layout.

Besides, there are several other efforts on depth estimation
with unified global and local information. Liu et al. [18] use
continuous variables encoding the depth of the superpixels in
the input image and discrete variables representing relation-
ships between neighboring superpixels to perform inference
through a graphical model. Zhuo et al. [19] propose to use
a hierarchical representation of the indoor scene and refine
the depth map guided by global layout. Liu et al. [20]
propose a method to refine depth map predicted by con-
volutional networks by continuous conditional random field.
Baig et al. [21], [22] express the global depth map of an
image as a linear combination of a depth basis learned from
examples. The basis is actually a dictionary of the training
data set and the images near the cluster centroids are picked
as basis elements. Our concurrent and independent work also

use cluster controids but with a totally different way, which
we will introduce in detail.

Under specific conditions, there are other depth extract
methods, such as dark channel prior proposed by He et al. [23],
that proved effective for hazed images.

The method closest to ours is the parametric model devel-
oped by Wang et al. [24] for describing the correlation between
single color images and depth maps. This work treats the
color image as a set of patches and derives the correlation
with a kernel function in a nonlinear mapping space. They
get convincing depth map through patch sampling. However,
this work only demonstrates the effectiveness of the model
and cannot estimate depth with an arbitrary input image. Our
improvements are twofold: we extend this model from one
image to many, and we transfer parameter set to an arbitrary
input image according to the best image set match.

B. Parameter Transfer

We carry out a survey on transfer methods in the field
of depth estimation. The nonparametric scene parsing by
Liu et al. [25] avoids explicitly defining a parametric model
and scales better with respect to the training data size. The
depth transfer method by Karsch et al. [13] leverages this work
and assumes that scenes with similar semantics should have
similar depth distributions after densely aligned. Their method
contains three stages. First, given an input image, they find K
best matched images in RGB space. Then, the K images are
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warped to be densely aligned with the input. Finally, they use
an optimization scheme to interpolate and smooth the warped
depth values to get the depth of the input.

Our work is different in three aspects. First, instead of depth,
we transfer parameter set to the input image, so we do not need
post process like warping. Second, our database is composed
of parameter sets instead of RGB-D images, so the database
occupies little space. Third, the depth values are computed
with the transferred parameter set directly, so we do not need
an optimization procedure after transfer.

III. DEPTH ESTIMATION BY PARAMETER TRANSFER

In this section, we first introduce the modeling procedure
for inferring the correlation between color images and depth
maps. Then, we introduce the parameter transfer method in
detail.

A. Parametric Model

The prior work of Wang et al. [24] proposed a model to
build the correlation between a single image I and its corre-
sponding depth map D with a set of parameters. We extend
this using a set of similar images IS and their corresponding
depth map DS. Therefore, the parameters contain information
of all the images in the set.

We regard to each color image as a set of overlapped
fixed-size color patches, of which the size will be discussed
later. For each image, we sample the patches x1, x2, . . . , x p

and their corresponding depth values from RGB-D image
set. To avoid overfitting, we sample only p patches from
each image. In our experiment, we set p as 1000 and the
samples account for 0.026% of the total patches in one image.
We use a uniform sampling method, i.e., we separate the image
into grids and select samples uniformly from all the grids.
By denoting N the number of images in an image set, totally
we sample N×p patches. Specially, for a single image, N = 1.

1) Modeling the Correlation Between Image and Depth:
After the sampling procedure, we model the correlation by
measuring the sum squared error between the depth d̂ mapped
with the sampled color patches and the ground-truth depth d.
The model is written as

E =
p×N∑

i=1

∣∣∣∣∣∣
tr

⎛

⎝W T
n∑

j=1

γ jφ(xi ∗ f j )

⎞

⎠ − di

∣∣∣∣∣∣

2

(1)

where E is the sum squared estimation error, p is the number
of sample patches per image, N is the number of images in
the image set, f j is the filters, and n is the number of filters
and set as 9 in all the experiments. If set larger, the algorithm
is expected to get better results but at a larger cost. φ is the
kernel function to map the convolved patches and sum them
up to one patch, γ j is the weight of each convolved patch, and
W is the weight matrix, whose size is the same as the size
of the one patch, aiming at integrating the overall information
from each patch.

Equation (1) can be rewritten as

E =
p×N∑

i=1

|wT φ(Xi F)γ − di |2 (2)

where Xi is a matrix reshaped from patch xi . The row size
of Xi is the same as that of fi , while F = [ f1, f2, . . . , fn ],
γ = [γ1, γ2, . . . , γn]T . w is the result of concatenating all the
entries of W .

At the image level, F describes the texture gradient cues
of the RGB image by extracting the frequency information.
γ describes the variance of filters. We use principle component
analysis (PCA) to initialize F and optimize it afterward. As for
the size of filter, we need to balance between efficiency and
effect. However, we use W to integrate the global informa-
tion, so we can choose smaller sized filters to reduce time
consumption. φ(·) is set as φ(x) = log(1+ x2), as it has been
proven effective in [24].

2) Estimating Model Parameters: First, we rewrite (2) as

E = ‖Mφ(X F)γ − d‖2
2 (3)

and

E = ‖�φ(FT X̂)w − d‖2
2 (4)

where X is got by concatenating all the Xi in (2). X̂ is got
by concatenating all the X T

i . Each row of M is wT and each
row of � is γ T . Hence, (3) is a least square problem of γ and
(4) is a least square problem of w. Then we minimize E by
optimizing the filters F . Finally, we get a set of parameters,
consisting of F , γ , and w. The detailed method for solving
this can be found in [24].

B. Parameter Transfer

Our parameter transfer procedure outlined in Fig. 2 has
three stages. First, we build a parameter set database using
training RGB-D images. Second, given an input image, we find
the most similar image sets using high-level image features
and transfer the parameter set to the input image. Third, we
compute the depth of the input image.

1) Parameter Set Database Building: Given a RGB-D train-
ing data set, we compute high-level image features for each
image. Here, we use GIST [26] features, which can be used
to measure similarities of images. Then, we categorize the
training images to N sets, using the k-means cluster method.
Next, we get the central GIST feature for each image set. For
each image set, the corresponding parameter set is obtained
using our parameter estimate model. The central GIST features
and corresponding parameter sets comprise our parameter set
database. Actually, this database is so small as to occupy much
less space compared with the RGB-D data sets.

2) Image Set Matching: Given an input image, we compute
its GIST feature and find the best matched central GIST feature
from our trained database. Then the parameter set correspond-
ing to the best matched central GIST feature (i.e., the central
GIST feature of the most similar image set) is transferred to
the input image. We define the best match as

Gbest = min
i=1,2,...,N

‖Ginput − Gi‖ (5)

where Ginput denotes the GIST feature of the input image and
Gi denotes the central GIST feature of each image set.

As the most similar image set matches the input closely in
feature space, the overall semantics of the scenes are similar.
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Fig. 2. Our pipeline for estimating depth. First, we build a parameter set database and then the parameter set is transferred to the input image according to
the best matched GIST feature. Finally, the parameter set is used to estimate the depth.

At the low level, the cues, such as the texture gradient, texture
variation, and color, are expected to be roughly similar to
some extent. With the model above, the parameters connecting
the images and depth maps should be similar. Therefore, it is
reasonable to transfer the parameter set to the input image.

3) Depth Estimation: We use the color patches of the input
image and the transferred parameter set to map the estimation
depth. The computational formula is

d̂ = Mφ(X F)γ (6)

where X are the patches, F are the filters, γ is the weight
to balance the filters, and M is the weight matrix. These
parameters are all from the parameter set.

IV. EXPERIMENT

In this section, we evaluate the effectiveness of our
DEPT method on single image RGB-D data sets.

A. RGB-D Data Sets
We use the Make3D range image data set [27]. The data

set is collected using a 3D scanner and the corresponding
depth maps using lasers. There are 534 images separated into
two parts, of which one is the training part containing 400
images and the other is the testing part containing 134 images,
respectively. The color image resolution is 2272 × 1704 and
the ground-truth depth map resolution is 55 × 305. Before
training, we resize the depth map resolution to the same size
of the color image, so RGB and D (depth) have pixelwise
correspondence.

B. Image Cluster
We compute the GIST features for each image in the

training data set. Then we use the k-means algorithm to cluster
the images into N sets, where we set N as 30. The images are
well separated according to the scene semantics. The silhouette
plot in Fig. 3 measures how well separated the resulting image

Fig. 3. Silhouette plot of the k-means cluster result. Each line represents
an image. Lines on the right side of 0 measure how distant that image is
from neighboring image sets. Lines on the left of 0 indicate that the image
is probably assigned to the wrong set. The vertical axis indicates different
clusters (image sets).

sets are. Lines on the right side of 0 measure how distant
that image is from neighboring image sets. Lines on the left
of 0 indicate that the image is probably assigned to the wrong
set. The vertical axis indicates different clusters (image sets).
As we can see, most of the images are well clustered. As for
the choosing of N , initially we choose it by observing the
silhouette plot and then we try a series of values with a step
of 10. The results around 30 are close, and 30 is the best. The
cluster number can also be set according to existing pattern
classification methods (e.g., methods to find best k in k-means
algorithm [28], [29]). We believe N should not be too large
or too small. Too large N may set similar scenes apart, while
too small N may result in large scene variety in one set.

An example image set is shown in Fig. 4. It can be seen that
the clustered images have roughly a similar semantic scene.
The depth distributions also seem similar, as are shown in the
color images as well as the depth maps.
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Fig. 4. One example image set after the image cluster procedure. (a) Clustered image set containing 18 semantic similar images and (b) their corresponding
depth maps. The depth distributions in the images are roughly similar.

C. Parameter Set Estimation
For each image set, we estimate the corresponding model

parameters. The overlapped patch size is set 15 × 15. The

filter size is set as 3 × 3. We separate each image into grids
and uniformly sample 1000 patches per image. Therefore, for
an N sized image set, totally 1000 × N patches are sampled,
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Fig. 5. Energy decline curves of the 30 image sets. E is on a ln scale.

which occupy 0.026% of the whole image set. We initialize the
filters with the PCA method and optimize all the parameters
using a warm-start gradient descent method. The iteration stop
condition is E < 10−6. In our experiment, the energy (i.e., the
sum squared errors E) declines as Fig. 5 shows. As can be
seen, most of the curves come to a steady state after about
1000 iterations. The smaller the steady energy is, the more
similar the images in that set are.

For each image set, we obtain one optimized parameter set.
The 30 parameter sets and the corresponding cluster centroids
(the center of the GIST features in each image set) make up
the parameter sets database.

D. Depth Estimation by Parameter Transfer

For each of the testing 134 images, we find the best matched
image set from the parameter set database and compute the
depth maps using the computational formula of (6).

1) Quantitative Comparison With Previous Methods:
We calculate three common error metrics for the estimated
depth. Denoting D̂ the estimated depth and D the ground-truth
depth, we calculate relative error

RE = |D̂ − D|
D

(7)

LE (log10 error)

LE = | log10(D̂) − log10(D)| (8)

and root-mean-squared error

RMSE =
√√√√

P∑

i=1

(D̂i − Di )2/P (9)

where P is the pixel number of a depth map.
Error measure for each image is the average value of all the

pixels on the ground-truth resolution scale (55 × 305). Then
the measures are averaged over all the 134 images to get final
error metrics, which are listed in Table I.

As can be seen, our results are better than Depth MRF [9]
in view of RE and LE and better than Make 3D [27]

TABLE I

AVERAGE ERROR AND DATABASE SIZE COMPARISON
OF VARIOUS ESTIMATE METHODS

in view of LE. In total, the results of DEPT are com-
parable to those of the state-of-the-art learning-based auto-
matic methods. Especially, DEPT requires only a very small-
sized database, and once the database is built, we can
compute the depth directly. Built from the 400 training
RGB-D images that occupy 628 MB space, our database size
is only 188 kB (0.03%). In contrast, the trained database
of depth transfer [13] occupies 2.44 GB1 (about four times
that of the original data set size). Though our method has
a disadvantage in average errors over the depth transfer,
we have a huge advantage in database space consumption
and computer performance requirement [Karsch et al. [13]
claim depth transfer requires a great deal of data (GB scale)
to be stored concurrently in memory in the optimization
procedure], which are especially crucial when the database
grows in real applications. Recent deep convolutional neural
network (CNN)-based depth estimation methods get lower
errors. Essentially, our convolutional operation and optimiza-
tion method is similar to CNN with only one layer. From this
point of view, our method achieves comparable results with
fewer parameters. If implemented on a high-end GPU, our
method would achieve much higher efficiency.

Furthermore, our method has also advantages in some of the
estimation effects, as is detailed in the following qualitative
evaluation.

2) Qualitative Evaluation: A qualitative comparison of our
estimated depth maps, depth maps estimated by depth trans-
fer [13], and the ground-truth depth maps is demonstrated in
Figs. 6 and 7. As can be seen, our estimated depth maps are
visually reasonable and convincing, especially in the details
like texture variations (e.g., the tree in the second column
of Fig. 6) and relative depth (e.g., the pillars’ depth in the
last column of Fig. 6 is well estimated by our DEPT method,
whereas depth transfer [13] estimates wrong). Actually, some
of our results are even more accurate than the ground truth
(e.g., in the third column in Fig. 7, there is a large part of a
wrong depth in the building area of the ground-truth depth
map). The ground-truth maps have some scattered noises,
which may result from the capturing device, while the noises
in our depth maps are fewer because we use the overall
information in the image set. However, we must point out that
the sky areas in our depth maps are not as pleasing, which
may result from the variation of sky color and texture among
various images in a set, especially when the cluster result is

1Implemented with the authors’ public codes at http://research.microsoft.
com/en-us/downloads/29d28301-1079-4435-9810-74709376bce1/.
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Fig. 6. Performance comparison: scenes of streets, squares, and trees. (a) Some test images containing streets, squares, or trees. (b) Corresponding ground-truth
depth maps. (c) Estimated depth maps by DEPT (our method). (d) Estimated depth maps by depth transfer [13].

biased. This may result in the increase in average error in the
previous metrics. However, as the RGB-D images acquired
by depth imaging devices increase, our database can expand

easily due to the extremely small space consumption, which
means that we may get more and more accurately matched
parameter sets for existing RGB images and video frames.
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Fig. 7. Performance comparison: scenes of buildings. (a) Some test images containing buildings. (b) Corresponding ground-truth depth maps. (c) Estimated
depth maps by DEPT (our method). (d) Estimated depth maps by depth transfer [13].

E. Evaluation on Indoor Data Sets

We also implement an experiment on the NYU Depth
V2 data set [30], which consists of 1449 indoor RGB-D
images captured with Kinect. We use the labeled data set,2

2http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

i.e., 1449 densely labeled pairs of aligned RGB and depth
images. The data set is partitioned into 795 training images
and 654 testing images. When training DEPT, we clus-
ter the training data set to 80 sets, guided by a k-means
silhouette plot and linear search. One example of the clus-
ter set is shown in Fig. 8. The quantitative results are
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Fig. 8. One example image set after the image cluster procedure on NYU. The clustered image set contains nine semantic similar images.

shown in Table II. In addition to the three standard
metrics, we also report the metrics used in [14], defi-
ned as

1

N

N∑

p=1

[[
max

(
dp

gp
,

gp

dp

)
= δ < t

]]
× 100% (10)

where gp is the ground truth of pixel p, dp is the cor-
responding estimated depth, N is the number of pixels,
t = 1.25, 1.252, 1.253 is the threshold, and [[·]] denotes
the indicator function. We can observe that DEPT achieves
comparable quantitative results with much less space and time
consumption.

The qualitative results are shown in Fig. 9. We can see that
DEPT gets not so smooth results (we did not use the smoothing
operation as did depth transfer), but infers more details on the
edges. This may be useful when an application cares more
about edges of the depth map.

In addition, the testing procedure (654 images) con-
sumes about 4 h with DEPT on our computer (Intel Xeon
E3-1330 V2 CPU, 16-GB RAM, 64-b Windows 7, without
any algorithm optimization), while it takes about 45 h with
depth transfer [13].

F. Replace GIST With Deep CNN

Following [31] and [32], we observe that CNNs have good
scene descriptions for images. Thus, we follow the method

of [32] to compute the representations of the RGB images.
The CNN feature extraction process is illustrated in Fig. 10.
For each of the training images, the representation is computed
as follows:

v = CNNθc(I ) (11)

where CNNθc(I ) transforms the pixels of image I into
a 4096D activation of the fully connected layer immediately
before the classifier, i.e., the 1000-way softmax layer. The
CNN parameters θc contain approximately 60 million para-
meters and the architecture closely follows the network of
Krizhevsky et al. [33], but we chop off the final 1000-way
softmax layer. In this way, after network forwarding, each
image is represented as a 4096D vector.

This vector can be treated as CNN features of the image.
We replace GIST features with CNN features in the previous
framework.

We carry out experiments with the new framework. The
result is listed in Tables I and II. We observe a decrease
in all the error indicators. This performance is better than
the originally proposed method in the conference version of
this work [34]. In the meantime, though CNN features can
improve the performance, it increases time consumption and
model size, because for now, most of the CNN-based methods
rely on high-performance GPUs. It is too slow on personal
computers, not to mention mobile devices. Therefore, we need
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Fig. 9. Performance comparison: indoor scenes. (a) Some test images containing indoor scenes. (b) Corresponding ground-truth depth maps. (c) Estimated
depth maps by DEPT (our method). (d) Estimated depth maps by depth transfer [13].

Fig. 10. Illustration of the CNN feature extraction architecture. A 224 × 224 crop of an image (RGB) is presented as the input. It is convolved with
96 different filters, each of size 7 × 7, using a stride of 2 in both x and y. The resulting feature maps are then passed through a rectified linear function
(not shown), pooled (max within 3 × 3 regions, using stride 2), and contrast normalized across feature maps to give 96 different 55 × 55 element feature
maps. Similar operations are repeated in layers 2–5. The last two layers are fully connected, taking features from the top convolutional layer as input in vector
form (6 × 6 × 256 = 9216 dimensions). The output of layer 7 are our CNN features in vector form (4096 dimensions). The final layer is a 1000-way softmax
function, whose output is one predicted class out of 1000.

to balance the performance, speed, and model size in real
applications. However, we can expect more improvement of

DEPT when better algorithms for semantic scene matching are
proposed.
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TABLE II

EXPERIMENTAL RESULTS ON THE NYU INDOOR DATA SET

V. CONCLUSION

In this paper, we propose a lightweight, effective, and
fully automatic technique to restore depth information from
single still images. Our DEPT method is novel in that we
use clustered scene semantics similar image sets to model the
correlation between RGB information and D (depth) informa-
tion, obtaining a database of parameter sets and cluster centers.
DEPT requires only the trained parameter set database, which
occupies much less space compared with previous learning-
based methods. Experiments on RGB-D benchmark data sets
show quantitatively and qualitatively good results comparable
to the state-of-the-art results. The estimated depth maps are
visually reasonable and convincing, especially in the details,
such as texture variations and relative depth. Furthermore, as
RGB-D images acquired by depth imaging devices increase,
our database can expand easily due to the extremely small
space consumption. As our model is only about 1 MB, it is
very suitable to use on mobile devices (the code will be
released upon publication). In the future work, we would like
to improve the cluster accuracy by exploring more accurate
similarity metrics that are applicable to our image and depth
correlation model. We plan to build a larger RGB-D image
data set, as more data bring better performance with our
method. Finally, we suppose it is also meaningful to improve
the depth estimation performance for video frames using opti-
cal flow features or other features related to time coherence.
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