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Abstract

Embedding a unified skeleton into diverse hand meshes
is a prominent task both for animation and pose estimation.
Most existing methods extracted skeletons from humanoid
characters under simple poses, e.g. T-pose or A-pose. Ap-
plying them directly to hand meshes may yield inaccurate
or implausible results because hands have higher dexter-
ity and similar endpoints. Furthermore, these methods did
not attempt to extract skeleton directly from a scan model
which may be not watertight and has much more vertices.
Our key idea is to unwrap meshes with different topologies
in the same image-based representation, named SUPPLE
(Spherical UnwraPping ProfiLEs), and then train a convo-
lutional encoder-decoder to extract skeleton under this rep-
resentation. Experiments demonstrate that our framework
produces reliable and accurate skeleton estimation results
across a broad range of datasets, from raw scans to artist-
designed models.

1. Introduction
Advances in learning-based 3D vision are boosting the

acquisitions of personalized hand scans from a set of im-

ages. Bringing these scans to life has the potential to en-

able numerous additional downstream AR/MR/VR appli-

cations, e.g., telepresence, remote interaction, and etc. To

achieve this goal, the embedded skeleton is the most fea-

sible method to describe hand pose [27, 9], perform hand

animations [43, 5, 69] and retarget hand motions [3, 71].

Therefore, extracting skeletons from those data quickly and

directly is critical.

Most existing methods extract skeleton from humanoid

characters [5, 69] or full-body scans [51]. In those tasks, the

distinction of the shape is more considered, while the pose

would be pre-aligned to a unified state (T-pose or A-pose),

and the topology should be water-tight. However, the pose
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Figure 1. Hand mesh and SUPPLE with joint annotations.
Each column corresponds to a mesh and its associated SUP-

PLE profiles. The same color is used to paint the joints from the

same finger. In each profile, the circle size of the joint is smaller

than the size of its parent.

may be diverse for a hand scan, and the captured topology

may contain noise and holes. Furthermore, the fingers on a

hand have more geometric similarities than the limbs of a

body, making chirality more difficult to discern.

Numerous learning-based approaches effectively esti-

mate hand pose (skeleton) from RGB [78, 27, 18, 77] or

depth [73, 47] with the explosion of image datasets. They

are basically attributed to the successful collaboration be-

tween image data and CNN structures. When applying to

typical 3D data, however, imperfections in the representa-

tion occur: neither triangle mesh with GCN [18, 12], voxel

grid with 3D-CNN [68, 47, 44], nor point cloud with Point-

Net [16, 19, 57] could save computation while retaining

neighborhood connectivity. This hinders the efficiency of

skeleton extraction from 3D hand models.

To this end, we first propose SUPPLE , a novel surface-

to-image representation that can be fast converted from

mesh. Our key idea is to recast the 3D hand skeleton extrac-

tion as a 2D key-points localization task defined on SUP-



PLE . SUPPLE is a combination of three complementary

projections designed to unwrap a 3D model under spheri-

cal coordinates. Compared with the projections in Carte-

sian space, the spherical projection significantly reduces the

mutual coverage between the surface parts, making the sur-

faces better fill the whole image. Compared with learning

directly from mesh, SUPPLE is grid-based and indepen-

dent to any fixed surface topologies; Compared with the

point cloud, it is ordered and easy to obtain neighborhood

features; Compared to voxel-grid, it records surface more

densely and allows for a deeper network because of the mi-

nor computational complexity.

When extracting 3D skeleton based on SUPPLE , the ad-

vantages of CNN are given full play: through the convolu-

tion at the image level, the features of 3D surface are effi-

ciently extracted; The architecture based on residual blocks

and the overall layout as encoder-decoder overcome the de-

fect of the in-homogeneity of spherical projections at the

equator and poles. Furthermore, the data augmentation in

the training process also enables our method to extract con-

sistent skeletons from hand scans containing noise and the

cartoon hand models designed by artists.

The main contributions of this work are summarized as

follows.

• A novel representation is proposed to unwrap a 3D sur-

face into image-like data effectively;

• A deep CNN architecture consuming our representa-

tion is designed to extract skeleton from hand scans

and artist-designed models;

• A series of mesh data augmentation strategies are pro-

vided to significantly increase the size of the available

training dataset.

2. Related Work

2.1. Skeleton Embedding

In different applications, skeletons vary in concept from

curve skeleton [4, 8, 39, 52] to animation skeleton [43, 5].

Here we concern more about the latter one, i.e. a tree hier-

archy with a series of joint locations.

Automatic Rigging. Most automatic rigging methods [5,

69, 70] aimed to embed (or extract) a skeleton of humanoid

character. These character meshes are mostly designed by

artists and placed under simple scan poses like T-pose and

A-pose. Some other work [61, 14, 37, 24] performed this

task with multiple example poses. These poses must be de-

fined based on the same mesh topology. Applying them

directly to hand meshes may produce erroneous or implau-

sible results due to the increased dexterity and similar end-

points of hands. Furthermore, these methods did not at-

tempt to extract skeleton directly from a scan model that

may be not watertight and has much more vertices.

Hand Pose Estimation. Skeleton has become an efficient

entity to describe hand pose in both 2D [62, 9, 67] and

3D [78, 27, 18, 77] pose estimation. There is a tendency

that more works prefer to obey the same skeleton embed-

ding style [63, 62, 73, 65, 79, 9, 76, 48, 49], which facilitates

the comparison and inheritance of former ones. This work

aims to estimate the joint position of the skeleton under this

definition from a given mesh.

2.2. Surface Representation

In the realm of 2D learning, there exist dominant repre-

sentation and paradigms [33, 25, 59]. These topics, how-

ever, are still in their infancy in 3D learning.

Explicit Data. The surface of an articulated object is

represented as the polygonal mesh in most skinning algo-

rithms [43, 30] and parametric models [41, 48]. Both ren-

dering and skeletal animation are beneficial from it. How-

ever, it is not straightforward to find correspondence be-

tween two meshes with different topologies, which impairs

the efficiency of the learning-based method. To extract

features of the 3D surface, voxelization of surface data

is perhaps the most natural extension of the well-known

learning paradigms that have excelled in the 2D image do-

main. However, due to the cubically growing memory re-

quirements, the work using voxel grid [68, 13] or its vari-

ants [22, 64] can not use a higher voxel resolution on the

whole space to preserve fine surface details. On the other

hand, point clouds with sufficient detail can recover sur-

face information through multiple schemes [38, 31, 23].

However, feature extraction directly from point clouds usu-

ally requires extra sampling and neighborhood aggrega-

tion [55, 56, 66, 57], which is caused by the disorder of

point cloud data.

Implicit Function. Several attempts [15, 29, 45, 28] have

been made to implicitly represent the body surface using

the neural occupancy function determined by the joint loca-

tions and rotations. This representation is useful for detect-

ing collisions between objects, however it is ineffective for

self-intersection [45]. To convert back to mesh, it relies on

the explicit model [41] with the same joint configuration to

determine a spatial range of the query point sets.

Unwrapping. UV map [6, 54, 60] is initially created to flat

the surface of a 3D model to easily wrap textures. Some

studies [6, 21, 72, 74, 11] utilized UV map to store the 3D

position vertices. Under this representation, the seam de-

stroys the continuity of the surface, and the impact of dif-

ferent seam designs on the estimation results has not been

quantified. In addition, the UV map still relies on the topol-

ogy constraints of the original mesh. This work employs

another surface unwrapping method based on spherical pro-

jection. Some pioneer work [36, 10, 53] utilized this un-

wrapping method for surface correspondence mapping, reg-

istration, and object classification. We extend the vanilla



spherical projection to three kinds of profiles. Under our

representation, the information between them compensates

for each other, which is no longer limited to recording the

shape information of aligned geometric objects and the sur-

face variety of the hand under different poses.

3. Method

3.1. SUPPLE Formulation

SUPPLE is a surface-to-image representation indepen-

dent of mesh topology and vertex number. It unwraps the

3D surface to an image using spherical projection, which

preserves the connectivity on the original surface. Due to

a single projection only keeps a monotonous profile of the

3D surface, three mutually compensated projections are uti-

lized to record the surface from different perspectives.

Normalization. As shown in Fig. 2 (a), a mesh is first nor-

malized into the unit sphere, so that the spherical coordi-

nates of arbitrary point P (ρ, θ, ϕ) on the surface ∂Ω (not

limited to vertices) have the following range: the distance

from the origin to the point ρ ∈ [0, 1]; The angle between

the positive z-axis and the ray from the origin to the point

θ ∈ [0, π]; The angle between the positive x-axis and the

same ray above ϕ ∈ [0, 2π]. To do that, P (x, y, z) is con-

verted to the spherical coordinate by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ =
√

x2 + y2 + z2

θ = acos(
z

ρ
)

ϕ = atan2(y, x)

(1)

Because atan2 ranges from −π to π, 2π are added to the

negative ϕ results. If not explicitly stated, the 3D coordi-

nates used later in this paper are all spherical coordinates.

Ray Profile. The recorded surface point in this profile Pr

can be considered to be a scan from a lidar fixed at the ori-

gin. In each direction determined by (θ, ϕ), the ρ value of

the outermost point on ∂Ω is reserved at:

Pr(
θ

π
Wa,

ϕ

2π
Ha) = argmax

ρ

{
P |P ∈ (

−−→
OR ∩ ∂Ω)

}
(2)

where
−−→
OR is a ray from the origin with direction (1, θ, ϕ).

Specifically, ray-mesh intersections [46] are repeatedly

tested between ∂Ω and the ray. If the intersections between

the surface and the ray occur, the farthest intersections are

recorded; Otherwise, the value is set to be zero.

Longitude Profile. The recorded surface point in this pro-

file Ps can be considered to be a combined section parallel

to the equatorial plane. In each longitude determined by

(ϕ, ρ), the normalized θ value of the point closest to the

XoY plane on ∂Ω is recorded at:

Ps(
ϕ

2π
Wa, ρHa) =

1

π
argmin
‖θ−0.5π‖

{
P |P ∈ (

>
A1A2A3 ∩ ∂Ω)

}

(3)

where the arc
>
A1A2A3 is a semicircle with radius ρ and cir-

cumscribed by A1(ρ, 0, ϕ), A2(ρ, 0.5π, ϕ), A3(ρ, π, ϕ). It

is generated by using a half-plane that passes through the z

axis and A2 to clip the mesh to find the intersection curve at

first, and then change the ρ of the semicircle from 0 to 1.0
with interval 1

Ha
to find the intersection points to the above

curve.

Latitude Profile. In each latitude (circle) determined by

(ρ, θ), the normalized ϕ value of the point closest to the

ϕ = π half-plane on ∂Ω is unwrapped at:

Pc(ρWa,
θ

π
Ha) =

1

2π
argmin
‖ϕ−π‖

{
P |P ∈ (�C ∩ ∂Ω)

}
(4)

where the circle �C is a latitude pass through all

C(ρ, θ, ∀ϕ). In practice, it is generated by using a sphere

centered at the origin and radius ρ to clip the mesh to find

the intersection curve at first, and then change the θ of the

circle from the northernmost pole to find the intersection

points to the above curve.

Concatenation. The three profiles are created separately

and stored in three channels of a color image (3, Ha,Wa) :

SUPPLE = Pr ⊗Ps ⊗Pc (5)

where ⊗ indicates the concatenation operation. Although

larger image size selection means that more detailed surface

information will be recorded in SUPPLE , we choose the

image resolution as Ha = Wa = 128 in practice. BVH [20]

is adopted to accelerate all the mesh-primitives intersection

calculations mentioned above.

Inverse Conversion. In a generated SUPPLE , each non-

zero pixel corresponds to a point on the surface. Fig. 3

shows the overall point distribution after converting all pix-

els back to Cartesian space, which is dense enough and

complement each other to cover the whole surface under

a variety of hand poses. These dense point clouds can be

reconstructed as a mesh through the marching cube [38],

which is similar to the implicit methods [15, 45].

3.2. Skeleton Extraction

When representing a hand mesh as a SUPPLE image,

the skeleton extraction can be regarded as a 2D key-points

location task. The pipeline of our method is shown in Fig. 4.

It has the following key components.

Profile Generation. The given hand mesh is transformed

into a SUPPLE image following 3.1. The input hand mesh

can vary significantly in terms of topology and poses. Fig. 4

shows an artist-designed hand mesh example collected on-

line. In addition, as pointed out in work [16], if the central



Figure 2. Mesh-SUPPLE Conversion. (a) The input mesh is first normalized into the unit sphere, which makes it easier to use spherical

coordinates later; (b) Three different profiles were generated through intersecting tests. The colors in the figure are only for illustration,

and they are actually grayscale. (c) SUPPLE can be converted back to a dense point cloud by querying pixels.

Figure 3. Mesh and queried point clouds. Each column corre-

sponds to a mesh and its associated point cloud queried from SUP-

PLE . The first row is the original mesh. The other two rows are

the point clouds from different views. The points marked as red

are from the ray profile, green from the longitude profile, and blue

from the latitude profile.

axis of the input model is aligned using PCA in advance,

the difficulty of learning can be reduced. This step is op-

tional in our method: even if the input mesh contains global

rotation, our method can still extract proper skeletons.

Heatmap Regression. Fig. 1 shows several SUPPLE ex-

amples with the projection of skeleton joints. Our encoder-

decoder network learns to estimate J = 21 joint heatmaps

from each profile. Consequently, the output shape of this

network is (63, Hb,Wb). For 0 ≤ k < J , we assume that

the first 21 channels H
(k)
r are regressed from Pr, the mid-

dle 21 channels H
(k)
s from Ps, and the last 21 channels

H
(k)
c from Pc. It should be noted that this division is purely

for supervisory convenience and that these channels are not

separated during the forward propagation. After balancing

the amount of network parameters and the accuracy of es-

timation, we set Hb = Wb = 32. Consistent with other

work on image-based heatmap regression [27, 67, 77], the

ground-truth heatmap is defined by:

H(k)(u, v) = exp

(
− (u− uk)

2 + (v − vk)
2

2σ2

)
(6)

For the joint k with the coordinate (ρk, θk, ϕk), im-

age coordinate (uk, vk) refers to ( θk2πWb,
ϕk

2πHb) in H
(k)
r ,

(ϕk

2πWb, ρkHb) in H
(k)
s , and (ρkWb,

θk
2πHb) in H

(k)
c . σ is

set as 2.0 in our experiments, which means that the sum of

pixel values for a single channel should be less than 8π (the

integral constraint of the Gaussian).

Network Architecture. The detailed structure of our joint

extraction network is shown in Fig. 5. It first uses two

parallel convolutions to extract features from the input pro-

files. The two branches are then concatenated and fed into

an encoder module with 5 residual blocks that progressively



Figure 4. Pipeline of the skeleton extraction process. (a) An input mesh is firstly converted as a SUPPLE image; (b) This profile

combination is then processed through an encoder-decoder network, whose task is to perform heatmap regression of the joint in each

profile; (c) The three heatmaps corresponding to each joint are transformed into the joint coordinates by voting.

Figure 5. Network architecture for skeleton extraction. (a) The

encoder module with 5 residual blocks; (b) The decoder module

with 4 groups of residual blocks and up-sampling. The dashed

arrow means that the process is only used during training.

encode profile feature maps with the gradual enlargement of

receptive fields. The decoder consists of 4 layers of stacked

residual block and up-sampling. Each layer takes a smaller

feature map produced later by the encoder as input, scaled

up by up-sampling to the same size as the feature map pro-

duced earlier by the encoder and concatenated together. Ex-

cept for the final output, leaky-ReLU [42] is placed between

layers for activation. The final output with size (63, 32, 32)
is passed through the channel-wise softmax and multiplied

by 8π. All the padding modes in the network are circular to

account for the connectivity between the profile’s edges. To

speed up the convergence of the training process, the second

to last feature maps are also exported by the shared convo-

lution of the final output. Both predicted joint heatmaps are

supervised using mean squared error with the ground-truth

generated using Eqn. 6.

Joint Localization. When using the predicted peak val-

ues ĉ
(k)
r , ĉ

(k)
s , ĉ

(k)
c respectively in Ĥ

(k)
r at (ur, vr), Ĥ

(k)
s at

(us, vs), and Ĥ
(k)
c at (uc, vc) as the confidences of the joint

coordinate (ρ̂k, θ̂k, ϕ̂k), the information is redundant. We

take advantage of this redundancy to create a mechanism

for voting on each joint coordinate. As for ρ̂k, it is deter-

mined by:

ρ̂k =

⎧⎪⎨
⎪⎩

vs
Hb

, ĉ(k)s > ĉ(k)c

uc

Wb
, otherwise

(7)

Similarly, ϕ̂k is determined by comparing ĉ
(k)
r and ĉ

(k)
s , θ̂k

is determined by comparing ĉ
(k)
c and ĉ

(k)
r . The channel-

wise normalization in the previous step ensures that these

comparisons are on the same order of magnitude. Finally,

the joint coordinate is converted from spherical to Cartesian

(x̂k, ŷk, ẑk) by the inverse of Eqn. 1.

Data Augmentation. Our training dataset contains the fol-

lowing components to ensure that the methods are robust to

shape, pose, chirality, water-tightness, and wrist-length:

• 100K instances generated randomly from MANO.

The shape parameters are sampled from the distribu-

tion N (0, 5), the global pose from N (0, 2π), and the

local pose fromN (0, 0.6π). The chirality is randomly

selected with equal probability;

• 100K instances generated from a linear blend skinning

(LBS) model with denser vertices. The pose parame-

ters are randomly sampled in the same manner as the

previous. In addition, the data is augmented in wrist

length variation and surface wrinkles shown in Fig. 6.

The length of the wrist region is evenly sampled be-

tween 0.1 and 0.8 times the length of the palm. Wrin-

kles are simulated by adding a random length offset

from the distribution U(−0.06, 0.06) on each vertex in

the direction of its normal;

• 5K instances randomly cropped from DeepHandMesh

(DHM) scans [48], whose origin hand scan models

include forearm components. Among them, 2K in-

stances are used for subsequent quantitative testing;



• 40K instances from Panoptic Studio [62] multi-view

reconstruction results fitted by Kulon et al. [35]. This

is the part of the training set provided in [35]. The

other parts are used for testing.

To further improve the robustness, random noise is added

independently on each profile with an existence probability

0.5. The distribution is similar to the salt-and-pepper noise,

and the value is evenly sampled from 0 to 1.0.

Figure 6. Mesh data augmentation strategies. All instances are

set to the same pose for convenience of observation. The wrist

regions are painted purple, and the base regions are painted green;

the other regions are gray. (a) The water-tight mesh; (b) The mesh

with a longer wrist; (c) The mesh with mirror transformation; (d)

The mesh without base (has a hole on the wrist); (e) The mesh

with shorter wrist; (f) The mesh with random surface wrinkles in

normal directions.

Implementation Details. We use Adam optimizer [32] to

train our network. Our networks are trained on a single

NVIDIA GeForce RTX 3090 GPU at a base learning rate

of 1e-4 and a batch size of 128, respectively. PyTorch ini-

tializes all weights with the default normal distribution. The

variations of 21-joint annotations across datasets mentioned

in Sec. 3.2 were not explicitly considered.

4. Experiments
4.1. Comparisons

Accuracy. On the test split of our dataset, our method

and alternatives are evaluated quantitatively and qualita-

tively. As shown in Tab. 1, we compared the accuracy

of skeleton extraction on MANO registered scans [58],

DeepHandMesh (abbreviated as DHM) [48] testing part,

Panoptic fitting [35] testing part, Hand3Dstudio [76], Frei-

hand [79], and Youtube3D [34]. Since a strictly watertight

mesh is required by the Pinocchio [5], a traditional mesh

hole filling algorithm [75] is adopted only for it in advance.

The other four competitors correspond to the state-of-the-

art methods using multi-view [17], point cloud [16], voxel

grid [70], and direct mesh [69] to extract skeletons in a data-

driven manner. In the comparison, model size and estima-

tion accuracy are used as evaluation criteria. Due to the

joints generated from [70, 69] are without a specific order,

Figure 7. Qualitative results for skeleton extraction from online
meshes. The samples in each row come from different datasets.

Each mesh is viewed from two perspectives. The meshes in the

first row are some printable CAD models; The meshes in the sec-

ond rows are some cartoon models; The meshes in the last row are

from [2].

CD-joint error [70] based on Chamfer distance are adopted.

All the learning-based methods are trained and evaluated on

the same dataset.

Robustness. With the same model, the robustness is evalu-

ated on both artist-designed hand meshes and hand scans.

The artist-designed hand meshes are mainly downloaded

from Thingiverse [1] and Utah repository [2]. They differ in

shape, pose, topologies and water-tightness. The hand scans

are collected from MANO [58] and DHM [48] testing part,

as well as some dense hand meshes captured by a hand-

held 3D scanner. As shown in Fig. 8, our scans have more

diverse shapes; The raw scans in MANO contain many iso-

lated points and holes; The decimated scans in DHM [48]

contain different lengths of wrists and incomplete fingers.

As illustrated in Fig. 7, some online models contain base

or multilayer surface, others include exaggerated fingers or

complex topologies. The proposed method has always been

able to extract the consistent skeletons from those heteroge-

neous data because of its superiority in both representation

and data augmentation.

4.2. Ablation Study

Conversion Time. The consumption time of converting

mesh with different configurations to SUPPLE is shown in

Tab. 2. 10K instances are used to test the average time con-

sumption under each configuration. The first mesh configu-

ration is the MANO model; The second one corresponds to

the LBS hand model with higher resolution; The last one is

the average configuration of hand scans. In each item, the

time consumption of the three profiles is counted separately.

All the time is tested on Intel Core i7-9700K with 8 cores

and 8 threads. With the parallel acceleration of OpenMP

and spatial binary search with BVH [20], it is efficient to

convert a mesh to SUPPLE .



Methods
Average CD-joint Error (mm)

DHM [48] MANO [58] Hand3D [76] Panoptic [62] Freihand [79] Youtube3D [34]

Multi-View CNNs [17] 15.101 18.153 21.029 15.006 12.998 28.387

Hand Pointnet [16] 14.279 17.925 20.371 13.074 12.704 27.261

Pinocchio [5] 12.091 17.934 18.803 13.720 12.116 26.043

Volumetric [70] 11.371 16.499 17.312 12.615 11.232 25.310

RigNet [69] 7.893 13.672 14.545 7.926 10.117 23.391

Ours with a variant of Pr 6.570 12.903 11.104 7.131 7.983 15.174

Ours with a variant of Ps 7.102 12.541 11.636 11.619 8.106 16.325

Ours with a variant of Pc 4.327 8.748 7.427 4.302 6.749 11.387

Ours w/o channel softmax 4.361 8.892 7.904 4.387 6.745 13.903

Ours w/o confidence voting 4.347 8.876 7.831 4.411 6.877 14.719

Ours w/o circular padding 4.350 8.874 7.822 4.356 6.752 12.690

Ours with dense block 4.331 8.857 7.491 4.405 6.717 11.903

Ours with 16× 16 output size 4.388 9.130 8.048 4.411 7.872 13.996

Ours with 64× 64 output size 4.322 8.738 7.351 4.302 6.657 11.381

Ours 4.323 8.737 7.349 4.291 6.657 11.381

Table 1. Accuracy for skeleton extraction. CD-joint refers to Chamfer distance between the predicted skeleton joints and the ground-truth.

The result of the related competitors are in the first 4 rows; The variants of our methods are in the last 7 rows.

Figure 8. Qualitative results for skeleton extraction from scans. The samples in each row come from different datasets. Each mesh is

viewed from two perspectives. The dense hand scans in the first row are captured by a handheld scanner. The sparse scans in the second

row with isolated points are from MANO. The scans with longer wrists in the last row are cropped scans from DHM testing part.

Coverage Ratio. Since each profile records partial sur-

face, we analyze the coverage of SUPPLE to the original

surface. It is compared with the method of projecting di-

rectly along the positive direction of x-axis, y-axis, and z-

axis in Cartesian space. The following evaluation criterion

is adopted to the coverage metric. First, the point cloud



Mesh
Average Time (msec)

(128, 128) (256, 256)

#V =0.7K,#F= 1.5K 57/30/16 225/96/45

#V =7K,#F= 18K 143/96/55 740/200/135

#V =176K,#F= 300K 80/150/443 303/280/1000

Table 2. Converting time from mesh to SUPPLE . The time

recorded in each row corresponds to the converting time of 3

profiles under the same mesh configuration. Each column cor-

responds to SUPPLE of the same size.

SA is queried from SUPPLE using the inverse conversion

described in Sec. 3.1, or from direct projection maps us-

ing inverse Cartesian projection. Another point cloud SM

is sampled by Poisson disk [7] from the original mesh with

the same point number as SA. Then, for each point in SM ,

if there exists a point in SA is close enough (distance less

than 1mm), this point in SM is considered covered. As il-

lustrated in Tab. 3, the ratio of covered point number to total

point number is used to determine the extent to which the

surface is covered. 10K meshes generated by MANO ran-

dom pose and shape parameters are used for the evaluation.

Profile
Coverage Ratio

(256, 256) (128, 128) (64, 64)

Ray Pr 42% 39% 33%

Longitude Ps 37% 35% 31%

Latitude Pc 39% 36% 33%

SUPPLE 91% 89% 83%

PX ⊗PY ⊗PZ 73% 72% 69%

Table 3. Coverage ratios of SUPPLE to its original mesh. The

ratio in each row are the single channel, the whole SUPPLE , and

the projection map generated in Cartesian space. Each column

corresponds to the SUPPLE of the same map size.

Alternative Choices. Evaluations of choices for our

method are shown in the last 7 rows of Tab. 1. All the

variants are trained in the same split and tuned in the same

hold-out validation set.

In terms of the representation, the definitions of each

profile were modified slightly. For the ray profile, the vari-

ant P′r was modified to record the innermost point of each

direction (θ, ϕ); For the longitude profile, its variant P′s was

modified to record the average θ value on a single longitude

arch; For the latitude profile, the variant P′c was modified to

record the average ϕ value on a single latitude circle. None

of the above variants has exceeded the original version in

performance.

In terms of the network modules, we first examined the

effect of removing channel soft-max and on the model. The

reason for its performance degradation is that during the

training process, the weight of some channels may be much

greater than that of other channels, thus failing to activate

the neurons in the whole network completely. We also

tested the effect of switching the confidence voting to the

confidence weighting. Although incorrect coordinate esti-

mation has lower confidence, mixing it with higher confi-

dence coordinate estimation will also damage the final re-

sult. In addition, we tried to use dense blocks [26] to re-

place the residual blocks and stack them into a similar net-

work structure. Finally, we evaluated the performance of

switching the circular paddings to the zero paddings. This

also reduces the reasoning ability of the network because

the latter can not make the features distributed on the four

edges of the image combine well.

In terms of the size of the output heat map, we tried

larger and smaller sizes compared with the final version of

32×32. When using smaller sizes as output, it is found that

such accuracy is insufficient in joint localization. On the

other hand, the ability to extract skeletons is not consider-

ably improved by using a network with a bigger output size,

yet the number of parameters is significantly increased.

5. Conclusion
This paper proposes a surface-to-image representation

and corresponding methods for efficiently extracting skele-

tons from hand meshes without shape, pose, and topology

constraints. To the best of our knowledge, they are the first

step toward establishing a general, multi-modal framework

for hand skeleton embedding. The representation, named

SUPPLE , compactly unwraps surface without topology de-

pendency. Compared with other traditional representations,

the neural network with SUPPLE can go deeper and extract

3D features more efficiently. An encoder-decoder network

is then designed, making the origin task a key-point local-

ization task on SUPPLE . The proposed method shows high

accuracy and robustness in extracting skeletons from both

noisy hand scans and diverse artist-designed hand models

in the experiments. Despite this, There are still several

limitations. First, only the mesh-SUPPLE conversion has

been thoroughly examined in this work. In the future, it

will be obtained directly from hand point clouds or depth

maps. Additionally, SUPPLE can be used to represent the

surface of objects in a broader context, such as clothed hu-

mans or rigid bodies. It would also be interesting to inves-

tigate learning methods that jointly regress the correspon-

dences [50] and skinning weights [40] from SUPPLE .
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