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Abstract

Physical contact provides additional constraints for
hand-object state reconstruction as well as a basis for fur-
ther understanding of interaction affordances. Estimat-
ing these severely occluded regions from monocular images
presents a considerable challenge. Existing methods op-
timize the hand-object contact driven by distance thresh-
old or prior from contact-labeled datasets. However, due
to the number of subjects and objects involved in these in-
door datasets being limited, the learned contact patterns
could not be generalized easily. Our key idea is to recon-
struct the contact pattern directly from monocular images,
and then utilize the physical stability criterion in the simula-
tion to optimize it. This criterion is defined by the resultant
forces and contact distribution computed by the physics en-
gine. Compared to existing solutions, our framework can
be adapted to more personalized hands and diverse ob-
ject shapes. Furthermore, an interaction dataset with ex-
tra physical attributes is created to verify the sim-to-real
consistency of our methods. Through comprehensive evalu-
ations, hand-object contact can be reconstructed with both
accuracy and stability by the proposed framework.

1. Introduction

Monocular hand-object contact recovery has wide appli-
cations, which can enable accurate interactions in metaverse
and telepresence robot control. Traditional methods often
judge contact regions by the closest distances between sur-
faces of the hand and object in an optimization strategy [58],
where the recovered contact highly depends on the accuracy
of hand-object pose estimation. However, this accuracy is
hard to be guaranteed by monocular reconstruction. Recent
approaches [5, 17, 62] learn the hand-object contact prior
from well-labeled datasets [3, 52], yet their performance
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Figure 1. Stability-driven contact reconstruction. Each row il-
lustrates the hand-object state represented by multiple ellipsoids.
The resultant forces and torques on the objects are calculated by
the physics engine [8].

rely on the diversity of the contact data.
Generally speaking, a credible contact is to ensure the in-

teracting stability between a hand and object in the physical
world, either to keep the object stationary or with a required
acceleration. To reconstruct this stable contact, our key idea
is to reconstruct the contact pattern driven by the physi-
cal criteria (i.e., the balancing of forces and torques) cal-



culated by a physics engine. It is noted that most existing
methods [7, 21, 27, 29] utilize the relative object displace-
ments to evaluate the contact stability. However, the crite-
ria cannot be directly used to drive optimization due to the
shortcomings in both hand modeling and stability evalua-
tion.

Regarding hand modeling, traditional methods for sim-
ulation utilize either a whole mesh [21] or multiple mesh
segments without connectivity [34, 55, 58]. Such models
are difficult to perform robot control and force analysis due
to the lack of a kinematic tree. To overwhelm the limita-
tions, we adopt a structured multi-body for dynamics sim-
ulation, whose rigid parts can be automatically adjusted
according to the personalized information estimated from
an image. Specifically, those hand rigid parts and the ob-
ject are jointly represented as a series of ellipsoidal prim-
itives, and our front-end network is used to estimate the
state parameters for composing these primitives. Compared
with MANO [47] parameters, regressing this state not only
brings acceleration to the calculation of self and mutual col-
lision during network training but also facilitates the con-
struction of our multi-body in a physics engine.

We argue that the stability could not be fully evaluated
by the displacement of the contact object, which is an aver-
age effect of the resultant force. Alternatively, some novel
stability criteria are proposed with more considerations on
physical factors related to contact. Considering the con-
tact constraints are unilateral, we use sampling-based op-
timization rather than gradient-based methods to make the
estimated state meet the above stability requirements. A
hand-object contact dataset is further built to analyze the
sim-to-real gap in our simulation. In addition to images
and meshes of hands and objects, our proposed dataset in-
cludes physical properties and stability evaluations for each
interaction scene. The stability of a real interaction scene
is mainly evaluated by the additional balancing force that
needs to be applied to the object when capturing contact by
our multi-view system.

Summarily, we make the following contributions.

• A regression-optimization framework for reconstruct-
ing hand-object contacts and physical correlation from
monocular images guided by stability;

• A hand-object representation and learning strategy
based on ellipsoid primitives, which brings conve-
nience to the process of both deep learning inference
and physical simulation;

• A hand-object interaction dataset containing physical
attributes and stability metrics, which validates the
sim-to-real consistency of related methods.

The dataset and codes will be publicly available at https:
//www.yangangwang.com.

2. Related Work
The reconstruction method discussed in this part mainly

takes the monocular color image as input and considers the
interaction between one hand and one object.
Hand-Object State Estimation. With the rapid increase of
3D hand datasets [16,33,61,64,68] and object datasets [23,
33, 61], data-driven methods [2, 15, 25, 26, 30, 37, 43, 54,
60, 63, 66, 67] become popular in the community. How-
ever, when the hand interacts with the object, the prob-
lem becomes further complicated because of severe oc-
clusions. The representation in pioneer datasets [14] and
methods [10, 53] only contained hand skeletons and object
bounding boxes. Subsequent work [6, 18] provided more
fine-grained hand-object surfaces depicted by MANO pa-
rameters [47] and specific object categories [4, 61]. With
more synthetic data, Hasson et al. [21] explored the scheme
to reconstruct the shape and pose of hand-object through a
unified network. Other methods [5, 17, 19, 20] placed more
emphasis on the hand state and object pose. This work also
relies on providing object meshes in the simulation. How-
ever, the object pose and hand features are estimated from
the input images.
Contact Estimation. There is a trend [40,48] to understand
the interaction pattern directly at the image level. Since
the contact area is generally invisible in the image, more
methods explore it from 3D states. To enable data-driven
methods, many pioneers [3, 11, 44] utilized expensive sen-
sors, ingenious deployment, and manual labor to obtain ac-
tual contact information without affecting the hand-object
appearance (marker-less). Others [21, 52] used the dis-
tance between the hand and the object surface in Mocap
data as the criterion to annotate the contact. Benefit from
these datasets, recent methods [5, 17, 62] learn the contact
area prior in advance and then iteratively optimize the hand-
object state according to the prior. In the evaluation stage,
some approaches treat the state with more contact cover-
age ratio as stable [17]. But this may exacerbate unreason-
able penetrations rather than improve the contact quality.
As [21] pointed out, this can be compensated for by evalu-
ation methods based on the physical simulation [58]. With
considering more contact-related physics, we create a sta-
bility criterion to effectively optimize the hand-object state
without the prior dependence.
Hand Collision Shape. Although hand meshes [47] are
convenient for rendering, they require expensive computa-
tion for collision detection on each vertex [17, 21, 38, 58].
For articulated objects such as the human body and hand,
collisions occur not only with other objects but also between
different links of themselves. Several attempts [9,28,29,35]
have been made to implicitly represent the surface with the
neural occupancy function, but they are ineffective for self-
intersection [35]. By contrast, approximation of articulated
objects using geometric primitives, e.g. capsules [13, 46],
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Figure 2. Hand-object state representation. The part colored in
brown indicates a shape variation w.r.t. the template. (a) Hand-
object template consists of 17 ellipsoids; (b) Template hands with
shape variations. (c) Personalized hands with pose variations.

spheres [39,45,49–51,59] or mixtures [41,42] are more in-
tuitive to tackle both kind of intersections. [56,57] presented
a conversion method from implicit spheres to smooth trian-
gular mesh. We propose a more concise scheme to represent
the hand-object as a series of ellipsoids. It builds a bridge
between network regression and optimization in the simu-
lated environment.

3. Method

We take two steps to reconstruct the state S of the hand-
object and their physical contact R from monocular color
images. First, a network is built to regress the shape and
coarse pose of the hand-object represented by ellipsoidal
parameters(Sec. 3.1). The above parameters are applied to
create dynamics scenes as the initial state of contact opti-
mization(Sec. 3.2). To facilitate the formulation, the tilde
superscripts represent the variables regressed from the net-
work, the hat superscripts represent the variables optimized
in the simulation, and the star superscripts represent the
ground truth.

3.1. Hand-Object State Estimation

Ellipsoid representation. To directly import scene into the
physics engine, the states of the personalized hand and ob-
ject are uniformly represented as a series of ellipsoids rather
than MANO [47]. Specifically, a hand is approximated as
16 articulated ellipsoids and an object is approximated as
one ellipsoid. Each ellipsoid can be implicitly represented
as the zero isosurface of the quadratic form function:

E(x|c, r,a) = (x− c)TA(r,a)(x− c)− 1 (1)

where c is the ellipsoid center, r is the radii, a is
the orientation represented as axis-angle. It should
be noted that the decomposition of the symmetric ma-
trix A(r,a) = R(a)T diag(r)−2R(a) is not unique,
e.g. A((a, b, c)T , (0, 0, 0)T ) vs A((b, a, c)T , (0, 0, 0.5π)T ).
Therefore, we adopt a traditional strategy [47] to create a
hand template {Ēi}16

i=1 shown in Fig. 2. With this template,

our hand-object state can be formulated as:

S({Ei}16
i=0) = S(β,θ,φ; {Ēi}16

i=1)

β , {δri}16
i=1,θ , {δai}16

i=1,φ , {δr0, δa0, δc0}
(2)

In this model, each ellipsoid can be scaled by δri and ro-
tated by δai w.r.t. its local frame. The center of the palm
is used as the coordinate origin and the camera coordinate
system is adopted in the network prediction phase. Other
ellipsoid centers can be constrained adaptively according to
the connection of the ellipsoid to its parent. Because inter-
acting objects usually keep a comparable scale and orienta-
tion to the palm, {δr0, δa0} as well as the center offset δc0

of the object are relative to the E1.
Mesh conversion. The explicit surface mesh is acquired
from implicit primitives in three steps shown in Fig. 4(a 1-
3). According to [1,56], the zero isosurface of the following
function corresponds a mesh surface:

M(x) = min{Ei(x|ci, ri,ai)}16
i=1 (3)

Additional convex hull calculations will make its surface
smoother. We use this approach to project the reconstructed
hand model into the image to calculate the error. On the
other hand, as shown in Fig. 4(b 1-3), diverse LBS hand
meshes [32, 38, 47, 58, 64] are first segmented according to
the skinning weights. Then oriented bounding box is cre-
ated for each segment, and the final ellipsoid maintains the
same radii and orientation as the box. This approach is
used to convert those existing mesh-labeled datasets to the
ground truth of β?,θ? for our training process.
Network architecture. The network is structurally de-
signed as an encoder-decoder. To retain more network at-
tention on the hand-object RoI, pixel-wise features includ-
ing 2D heatmap, Z-maps of hand joints and object center,
hand mask, and object mask are decoded and supervised.
The backbone of its encoder is ResNet18 [22] with extra
connections to its decoder. Those encoded features are then
encoded again and concatenated with the previous features
to predict our state parameters β,θ,φ. In addition, joint
regressor J (β,θ) is required to regress the joint position
between adjacent ellipsoids. It is designed as a two-layer
MLP and used to regress joint coordinatesX ∈ R3×21 from
the explicit mesh vertices of each ellipsoid.
Training process. Because the coordinate of our represen-
tation is hand-centered, the datasets with only hand mesh
annotation [32,38,64,68] can be used in our training. In the
first stage, semi-supervised paradigm is adopted to pre-train
our network using those datasets with hand-only or object-
only annotations. The overall loss includes:

LS1 = ‖β̃ − β?‖22 + ‖θ̃ − θ?‖22 + ‖X̃ −X?‖22
+ L2D + Lin(S̃)

(4)



Figure 3. Stable contact reconstruction pipeline. (a) Hand-object state represented by implicit ellipsoids is estimated from the input
image; (b) Simulated interaction scene is direct constructed from the estimated parameters; (c) The optimization process is driven by the
stability cost in simulation to get more reliable states iteratively.

Figure 4. Conversions between implicit and explicit hand
shape. (a 1-3) Steps from implicit ellipsoids to mesh. To show
more details, 3 ellipsoids with great directional variation are used
to illustrate; (b 1-3) Steps from explicit mesh to ellipsoids.

The first three items are the hand 3D reconstruction errors.
The joint location is estimated with the help of our joint re-
gressor X̃ = J (β̃, θ̃). L2D contains the error of all the
2D information regressed in the intermediate steps. Some
datasets may not have all annotations, then the correspond-
ing term is also not supervised. The last term is the contact

loss designed as point-based [28, 35] to penalize the colli-
sion among ellipsoids:

Lin(S̃) = −
∑

x∈Ω(Ei)

∑
j 6=i

Ej(x|S̃), where Ej(·) < 0 (5)

In practice, 872 vertices uniformly distributed on Ω(E) are
sampled in advance, whose actual coordinates x on Ei are
determined by the ellipsoidal parameters S̃.

In the second stage, we use the datasets with full annota-
tions [3, 6, 18, 21] to train our network thoroughly:

LS2 = LS1 + ‖φ̃− φ?‖22 + ‖Π(S̃)−Π(S?)‖22 (6)

where Π denotes the differentiable projection process to
generate the hand and object mask through orthogonal pro-
jection. The camera parameters can be obtained by com-
paring the scale and translation of the hand model with 2D
key-points in the image.
J (β,θ) is trained independently. Since it is a map-

ping from the surface vertices and joints of the hand model
during the movement, we obtain a large amount of pair-
wise training data through the forward dynamic of our hand
model in the physics engine.
Implementation details. Our networks are trained on a
single NVIDIA GeForce RTX 3090 GPU at a base learn-
ing rate of 1e-4, an input image size of 256 × 256, and a
batch size of 64, respectively. We use Adam solver [31] in
PyTorch as the optimizer in our training.

3.2. Physical Contact Recovery

Our optimization process is driven by the physical sta-
bility evaluated on each sample.



Figure 5. Qualitative results on our dataset. For each sample
image, the estimated results from the network and optimized re-
sults are displayed from two views.

Scene initialization. The estimated state S̃ are used to
initialize the interaction scene in the physics engine [8].
Firstly, the hand template {Ēi}16

i=1 with personalized vari-
ation β̃ are used to construct a dynamic multi-body with
16 ellipsoidal links and fixed root at the origin. The de-
tailed object mesh is loaded to the scene with the position p̃
and orientation q̃ which are determined by φ̃. Because it is
challenging to estimate the linear acceleration ~a and angular
acceleration ~α of the object from a single image, they are
simply set to zero in the following steps. To facilitate the
sampling, the hand pose θ represented by the axis-angles
is converted into ϑ represented by the Euler angles. Two
schemes are adopted for local DoF: retain all 45 or only 20
physically plausible ones [62, 65], i.e. |ϑ| = 48 or 23. The
hand root is constrained at the origin before optimization,
and is allowed to reach a new location t̃ during sampling.
As a result, (ϑ̃, t̃, p̃, q̃) are involved in the next step.

Stability evaluation. The actual physical contact of the
given hand-object state is calculated in the impulse-based
simulation [36]. Specifically, the collisions are detected
among the hand links and object. Based on the Coulomb
friction model [12, 24], normal force and lateral friction
forces at each contact point are calculated based on the
penetration depth. The hand is maintained at a given tar-
get pose driven by the PD controller, and the object moves
passively due to its own gravity and hand contact forces.

Consequently, the contact is evaluated by the stability cost:

C = CS(p̂, q̂, ϑ̂, t̂) + CR(~f ,~τ ,m) (7)

where CS measures the change in hand-object state before
and after simulation, CR measures the physical relationship
including the resultant force ~f(t), torque ~τ (t) and the num-
ber of contact points m(t) collected in 0 < t < T :
CS = ‖p̂− p̃‖2 + LQ(q̂−1q̃) +

1

|ϑ|
‖ϑ̂− ϑ̃‖1 + ‖t̂− t̃‖2

CR =
1

T

T∑
t=0

‖~f(t)−Mo~a‖22
‖Mo~g‖22

+
‖~τ (t)− Io~α‖22
‖Io~α‖22

+ e−m(t)

(8)
In practice, the change of object direction is measured by
the angular difference. The normalization of ~f(t) and ~τ (t)
based on the mass Mo and moment of inertia Io of the par-
ticular object could avoid the impact of the stability cost due
to the variation of objects. To prevent the object from flying
out of the hand operating area in each simulation step t, the
state of the object would be reset if ‖p̂(t) − p̃‖2 > 0.1 or
LQ(q̂(t)−1q̃) > 0.3π.
Iterative sampling. Due to the contact constraint being
unilateral which may fail to compute the gradient, We use
sampling-based optimization driven by the above stability
criterion. The distribution D(ϑ̂) is initialized by Gaussian
with ϑ̃ as the center and 0.1π as the variance of each dimen-
sion, and the distribution D(t̂) is initialized by Gaussian
with 0 as the center and 0.05 as the variance of each dimen-
sion. In each iteration k, the samples {ϑ̃(n)

k , t̃
(n)
k }Nn=1 with

lower cost are given greater weight. Using these weighted
samples, the variance of each dimension is updated before
the resampling. In the last round, the lowest cost state, to-
gether with the contact point and contact force, is the result
of hand-object interaction reconstruction.
Implementation details. In our experiment, the number of
sampling iterations is set to K = 30, and the number of
samples is set to N = 300. For each state sample, the in-
teraction process is performed T = 120 steps in the physics
engine. All the samples in the same iteration are simulated
in parallel. The time step follows the default 240Hz set-
ting in the bullet physics [8], i.e. each simulation process
corresponds to 0.5s in the real physical world. Distance is
measured in meters, mass in kilogram, and force in New-
ton. The gravity direction is considered to be down along
the Y-axis in the image coordinates. For objects from other
datasets [3, 21, 52, 61], the mass is proportional to its vol-
ume, and the density is uniformly set to 500kg/m3. The
restitution coefficient of both hand and object is set to 1.0.
The friction coefficient between the hand and objects is set
to 0.8. For the objects in our dataset, the mass and friction
settings follow the actual measurement results contained in
our Sup. Mat .



Figure 6. Interaction dataset with physical attributes. (a)
Multi-view dataset with mesh and mask annotations; (b) 20 ob-
jects classified into 6 categories; (c) Real models of our objects.

3.3. Interaction Dataset Preparation

As shown in Fig. 6, we created a dataset containing
multi-view color images, hand and object visible masks,
physical attributes, and stability degree measured by the
magnitude of the extra balancing force. In summary, it con-
tains 1K scenes of 20 subjects interacting with 20 objects
captured by 25 cameras. These objects are classified into 6
categories according to their shape, including A) cones, B)
prisms, C) cubes, D) spheres, E) disks, and F) columns. For
more details about our dataset, please refer to Sup. Mat .

4. Experiments

In this section, the evaluating datasets and the criteria are
first defined in Sec. 4.1. Our method is compared with the
SOTA methods in Sec. 4.2. Detailed ablation studies are
also conducted to our key components in Sec. 4.3.

4.1. Datasets and Metrics

Datasets. The existing dataset contains two main types.
The first type [6, 14, 18] records real RGB images and the
whole hand-object interaction process including approach,
contact, and manipulation. This kind of data is used to test
our entire pipeline. To reduce the ambiguity in the selec-
tion of interacted objects, we follow the method [21, 62] to
filter these datasets with the 3D distance between the hand-
object not exceeding 5mm as the threshold. The official

Datasets ContactPose [3] GRABrh50

Methods GT. [17] Ours‡ GT. [17] Ours‡

Max Pene.(mm) ↓ 11.62 12.07 8.54 10.33 12.38 7.54
Inter.(cm3) ↓ 12.24 12.35 6.13 14.62 13.97 7.28
Disp. (mm) ↓ 4.68 4.35 1.02 4.25 4.47 1.23

SC. ↓ 1.46 1.03 0.27 1.34 1.28 0.44

Table 1. Evaluations for Hand-Object Contact Estimation.
‘Ours‡” denotes our method with optimization only.

testing set from HO3D [18] is not used due to the lack of
hand mesh ground truth. In the end, the data used for test-
ing contains 7,373 samples in FPHB [14], 69,292 samples
in HO3Dv3 [18], and 93,264 samples in DexYCB [6]. An-
other type [3, 21, 52] focuses on recording the contact pat-
tern of the hand-object. For each sequence in GRAB [52],
we extracted the interaction sub-sequences containing con-
tact between the right hand and object with 50 frames as an
interval. This dataset is denoted as GRABrh50. In the end,
the data used for testing contains 2,259 samples in Contact-
Pose [18] and 19,008 samples in GRABrh50 [52].
State Error. Due to the hand mesh reconstructed by our
method being different from MANO [47], the mean per-
point position error (MPJPE) of 21 hand joints is chosen to
evaluate the 3D reconstruction error. In 2D, the mean in-
tersection over union (mIOU) is adopted to evaluate the re-
projection error between the conversed mesh and the ground
truth. As for the object, the vertices of the posed object
are obtained by aligning the object reference mesh with the
estimated ellipsoids. The mean per-vertex position error
(MPVPE) and the mIOU are adopted to evaluate the object
error.
Contact Quality. First, max penetration (Max Pene.) and
intersection volume (Inter.) [21] are adopted to evaluate
the geometric relationship. Then, simulation displacement
(Disp.) [21] and our stability cost (SC.) defined in Sec. 3.2
are used to evaluate the contact stability in the same sim-
ulation settings. For a fair comparison, the ellipsoid hand
is converted to the convex-hull mesh when computing these
intersection metrics according to Sec. 3.1.
Sim-to-Real Gap. For each scene in our dataset, the cor-
relation between the balancing force and the corresponding
cost is used to evaluate the simulation effectiveness.

4.2. Comparisons

State Estimation. In the task of estimating hand-object
state from monocular images, our method is compared with
the methods using pure regression [19,21] and the methods
with additional optimization [5, 62]. As shown in Tab. 2,
the hand-object state estimated from our front-end network
has a better performance than the direct regressing method,
and our full pipeline achieves the best results across data
sets. This demonstrates that our approach outperforms other
MANO-based regressions in terms of representation, and



Figure 7. Qualitative results on DexYCB [6] and ContactPose [3]. For each sample, the optimized state increases the stability of the
contact while ensuring the consistency of the initial state estimated by the front-end network.

our recovery module can achieve effective optimization of
the contact pattern. In some cases, the position accuracy of
hand-object may be slightly influenced by the optimization
with their stability increasing. This may be caused by the
difference between real and simulated conditions.
Contact Recovery. By taking the hand-object state, our
recovery module is compared with [17] under ContactPose
and GRABrh50. As shown in Tab. 1, our method increases
the stability of the contact while reducing the penetration.
This further illustrates that the contact has been optimized
more comprehensively with our method.

4.3. Ablation Study

Due to the ContactPose [3] having both images and accu-
rate contact, most of our ablation experiments are based on
this dataset. Among them, the results of completely using
our entire pipeline are in the last row of Tab. 3.
Training Paradigms. The verifications of two key com-
ponents in the training process, including semi-supervised
pre-training and contact loss, are shown in the first two rows
of Tab. 3. The lack of collision loss may worsen the initial
state of the hand-object before optimization, which in turn
affects the whole optimization process. On the other hand,
the network without pre-training is less robust to the diver-
sity of hand posture, the change of perspectives, and the
occlusion during hand-object interaction, which may have

similar effects on the entire pipeline.

Stability Cost. We compared the importance of each term
in our stability cost, as shown in the middle 6 rows of Tab. 3.
The lack of each item would weaken the final result, among
which the force item has the greatest impact. Further, we
replaced the stability cost with the displacement defined
on our hand model as the objective of driving optimiza-
tion, while the result becomes worse as shown in row 8 of
Tab. 3. The main reason may be that the object displace-
ment can only reflect the contact stability in fewer simu-
lation steps. Therefore, our criteria could measure contact
patterns more generally. The method with only collision de-
tection in the physics engine is also employed, which does
not have enough stability either.

Hand Model. As shown in row 9 and row 10 of Tab. 3,
the choices of collision shape and local DoFs of our hand
model are also explored under the same simulation condi-
tions. Among them, the hand consisting of mesh segments
leads to poorer stability. This may be caused by the fact
that the mesh collision shape in the physics engine is au-
tomatically approximated as a convex hull, which changes
the accuracy of collision detection. On the other hand, the
hand with more local DoFs has lower accuracy because it
increases the difficulty of optimization. To improve the effi-
ciency of sampling and optimization methods, the methods
with 20 local DoFs were adopted.



Datasets FPHB [14] HO3Dv3 [18] DexYCB [6]

Methods [21] [19] [62] Ours† Ours [19] [62] [5] Ours† Ours GT. Ours† Ours

mIoUH(%) ↑ - 54.54 - 59.34 62.01 64.04 - - 61.52 61.43 - 62.64 63.52
MPJPEH(mm) ↓ 28.80 19.32 - 19.10 18.56 14.32 - 9.50 10.96 9.14 - 11.32 11.15
mIoUO(%) ↑ - 66.10 - 71.34 72.58 75.26 - - 82.53 82.47 - 80.66 81.34

MPVPEO(mm) ↓ - 21.07 21.57 21.14 20.96 20.08 73.28� - 19.34 19.45 - 18.61 18.84
Max Pene.(mm) ↓ 15.12 18.08 16.92 15.07 11.43 10.29 16.47 - 16.85 11.36 10.65 7.32 6.72

Inter.(cm3) ↓ 10.90 11.05 11.76 10.12 6.23 12.26 7.44 - 7.32 6.19 14.76 6.94 6.61

Table 2. Evaluations for Hand-object State Estimation. “Ours†” denotes our method without optimization, “Ours” denotes our full
pipeline. The item marked by “-” indicates that the work has not been trained or tested on the relevant dataset. The item marked by “�”
denotes the wrist-relative object vertex error.

Figure 8. Correlation between stability cost and real forces.
The horizontal axis is the real-measured force, and the vertical
axis is the corresponding stability cost of the same hand-object
state reconstructed in the simulation environment. The data corre-
sponding to 6 types of objects are marked with different colors.

Sim-to-Real Correlation. With interaction scenes in our
dataset, we quantitatively analyze the relationship between
simulation stability cost and actual compensation force.
For more details about the balancing force measurements
and corresponding physical properties, please refer to our
Sup. Mat . In the experiment, each hand-object scene re-
constructed was used to directly initialize our simulation
interaction scene, and then their stability cost was calcu-
lated. Each reconstructed hand object scene is used to di-
rectly initialize our simulation interaction scene. Their ac-
tual stability during capturing is measured by the scale of
the balancing force, and the stability in the simulation is
measured by the stability cost. The mass and friction coef-
ficient of the object in the simulation is set to be the same as
the actual measured values. As shown in Fig. 8, for objects
with different shapes, the actual stability and simulation sta-
bility have different correlations. Among them, objects in
class F (i.e. columns) correspond to multiple slopes, which
is caused by the great scale variations within the categories.

Method Inter.(cm3) ↓ Disp. (mm) ↓ SC. ↓
w/o Lin 7.41 4.65 0.86

w/o pre-trained 7.34 3.77 0.51

w/o CS Opt. 6.32 3.43 4.62
w/o Lcnt. 6.28 2.39 0.58
w/o Lfrc. 6.23 2.66 0.73
w/o Ltau. 6.37 2.17 0.64

w/o Cstab Opt. 7.32 1.92 1.44
Opt. with Disp. 6.94 3.43 4.62

w/o Ellipsoids 6.36 1.59 0.64
with |ϑ| = 48 6.32 1.47 0.47

Ours 6.24 1.13 0.31

Table 3. Ablation study on ContactPose. The components in net-
work training paradigm, optimization function and physical hand
model are evaluated.

5. Conclusion

This paper proposes a novel monocular hand-object con-
tact recovery scheme driven by the simulated stability cri-
teria in the physics engine. Through sampling-based op-
timization, a more stable contact pattern is obtained with-
out data prior dependence. A hand-object ellipsoid repre-
sentation further promotes the effective implementation of
our regression-optimization pipeline. It enables personal-
ized hand shape variations at the same time. The sim-to-
real consistency is verified later by our contact scene dataset
with real physical properties and stability evaluation.

Limitations and Future Work. Although our method
is robust under existing datasets, it may become invalid
in a complex scene with severe occlusion or multiple
hands/objects. Getting rid of object mesh dependence is
also significant for the improvement of our approach. In the
future, rewards with our stability cost considerations could
more effectively guide reinforcement learning methods to
reconstruct hand-object interaction sequences.
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