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ABSTRACT
This paper proposes a new system named as Hand-3D-Studio
to capture the 3D hand pose and shape information. Our sys-
tem includes 15 synchronized DSLR cameras, which can ac-
quire high quality multi-view 4K resolution color images in
a circular manner. We then introduce a 2D hand keypoints
guided iterative pixel growth matching strategy for 3D re-
construction, where the 2D keypoints are obtained via con-
volution neural network. We find that the pre-detected 2D
hand keypoints can greatly remove the matching noise, and
thus improve the performance of reconstruction. After that,
a non-rigid iterative closest points algorithm is performed to
drive a template hand to fit the point clouds and register all
the hand meshes. As a consequence, we captured more than
20K high quality hand color images, annotated 2D hand key-
points, 3D point cloud as well as the registered hand meshes
(>200). All the data are public on the website http://
www.yangangwang.com for future research.

Index Terms— Multi-view, 3D Reconstruction, 3D Hand
Pose Estimation, Dataset

1. INTRODUCTION

Capturing a high fidelity 3D hand model is a important prob-
lem, which has seen a significant amount of research interests
due to its applications in computer graphics, animation, hu-
man computer interaction, rehabilitation and etc. Typically,
two main strategies, that are depth sensors [1] and RGB
sensors [2], can be utilized to perform this task. In recent
years, researches have demonstrated that multi-mode data
types (e.g., point cloud, color image or even multi-view color
images) could improve the performance of 3D hand pose
estimation. However, due to the limitations of acquisition
equipment, many of the existing public hand datasets do not
meet such requirements.

This work aims to build a system to collect the multi-
mode data types of hands. We propose a high-precision multi-
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camera acquisition system, which consists of 15 high-quality
DSLR cameras. A miniaturized collecting ”yurt” with cam-
eras and a led light set was specially designed for hand capture
as shown in Fig. 1. The height and tilt angle of the proposed
system can be adjusted up to 5.9 feet and 45 degrees respec-
tively, which fits all the hands capture. The customized led
light set minimizes specularity and makes the hand details be
clear, where the monotonous texture and specularity on the
hand may lead to noisy reconstruction results. It is noted that
most people are unable to prevent their fingers from trem-
bling, and even they cannot hold their hands still for seconds.
In order to solve this challenge, we propose several strategies
to make the synchronization delay of our system be less than
10 milliseconds.

Our system combines the advantages of the single depth
sensor systems and RGB sensor systems. With the proposed
system, we build a new hand dataset with high fidelity 3D
hands, which consists 4K multi-view RGB images, point
cloud data from stereo matching, 2D & 3D hand joints and
fitted 3D hand mesh models. Our system and data would
greatly improve the accuracy and fidelity of existing works
to estimate the 3D hand pose. The large-scale texture data
also provides more possibilities for obtaining high-precision
pore-scale hand surfaces. All the multi-mode hand data are
public on the website http://www.yangangwang.com
for future research.

2. RELATED WORK

In order to estimate the 2D and 3D hand poses, many efforts
have been made to acquire the hand datasets. Currently, pub-
lic datasets can be mainly divided into three categories by
the sensors: RGB, depth and mixtures. The monocular RGB
data is often used for the 2D joints estimation [3, 4, 5] while
multi-view systems[6, 7] perform well in the 3D pose estima-
tion. The amount of the depth data[8, 9] is increasing with
the recent progress in consumer RGB-D sensors[10]. How-
ever, these datasets lack unbiased 3D surfaces of hands. The
recent work [11] tries to deploy multiple cameras to annotate
3D hand keypoints and shapes, but is still lack of accurate
surface constraint in hand 3D space.

Some commercial solutions for a 3D body scan can be
also used for 3D hand modeling. The 3dMDhand[12] system
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Fig. 1. Acquisition setup. This acquisition setup consists of 15 cameras, a led light set and the customized ”yurt” cage. (a)
Horizontal off state; (b) Tilted working state, the system is adjusted according to the size of the subjects; (c) Capturing hands
only; (d) Capturing hands with an object.

synchronizes five modular units of machine vision cameras
and an industrial-grade flash system in a single capture. But
it requires the special equipment and only generates a model
without multi-view images. TEN24[13] creates a capture rig
consisting of hundreds of DSLR cameras and generates fine
hand models by the multi-view stereo. But the raw scan must
be cleaned up manually to fix the bulges and holes on the sur-
face, which limits the quantity of outputs. TechMed 3D[14]
uses a handheld 3D scanner to scan hands. A single scan usu-
ally lasts dozens of minutes. Therefore, it can only generate a
processed smooth hand with very few details.

For synchronization, a typical multi camera control solu-
tion is Smarter Shooter[15]. The system is able to control up
to 100 cameras at the same time through a USB connection.
Unfortunately, the synchronous time is more than 1 second,
which is too long to capture a highly-transient hand.

3. METHOD

The pipeline of the proposed method for 3D hand reconstruc-
tion is illustrated in Fig. 2. Our system has four main parts,
which includes: hardware system, 2D hand pose estimation,
multi-view point cloud reconstruction and non-rigid icp fit-
ting. In the following sections, we will introduce each indi-
vidual part in details.

3.1. Hardware System

Customized Holder. The system uses a customized holder
for the hand capture. The core of the holder is a “yurt” cage,
the height and angle of which can be adjusted depending on
the height and shape human. The height range is 4.26 feet
to 5.90 feet, and the angle range is 0 to 45 degrees. We use
the industrial aluminum to build the holder. This material is
lighter and can hold more weight. In order to adjust the posi-
tion and angle of each camera, we attach the cameras on the
holder by camera mounts. Soft-light baffles can be optionally
mounted around on the pillars of the cage to restrain specu-
larity and provide an enclosed environment that avoids much

of the ambient light interference.

Camera Arrangement. The capture setup consists of 8
Canon EOS-80D DSLR cameras and 7 Canon EOS-1200D
DSLR cameras, where eight 80Ds are divided into 4 groups
and fixed about every 90 degrees inside the customized
holder. The 1200Ds are fixed on the top of the holder, as
illustrated in Fig. 1. The cameras at the top effectively
supplement the missing parts on surfaces obtained from the
80Ds. Other camera arrangements, such as all the cameras
are evenly placed in a ring, would lead to an incomplete ges-
tures capture because of the lack of images from the top side.
Another arrangement is a jagged ring with a larger baseline,
which leads to plenty failed matches and numerous holes.

Synchronization. Different from the face capture, all cam-
eras must take the pictures of the hand at the same time, be-
cause it is really difficult for people to keep their hands still for
a while. We use high speed wireless remote controls to gener-
ate the shutter signal and the common 2.5mm audio cable to
split the signal to control all the cameras. All the cameras are
wired to a wireless receiver. This wired connection allows the
cameras to shoot at almost the same time. The synchroniza-
tion delay is less than 10 milliseconds, far less than the USB
software control scheme.

Lighting. The light set also plays an important role in gen-
erating a high quality hand model. A bright illumination is
necessary to avoid noises and increase the shutter speed. A
total length of 50 meters LED strips are mounted on the out-
side of the “yurt” to provide a shadowless illumination around
the hand. Light passes through the diffuser and forms diffuse
light to minimize specularity.

3.2. 2D Hand Keypoints Estimation

We use the 2D hand keypoints to help the 3D hand reconstruc-
tion, especially for guiding the pixel matching among differ-
ent cameras. The 2D hand keypoints are obtained through an
encoder-decoder hand pose estimation network [3] other than
manual annotations. The main idea of the method is to simul-
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Fig. 2. Pipeline. Multi-view images are first acquired from our HAND-3D-STUDIO hardware system. We use an encoder-
decoder network to obtain the 2D hand keypoints and masks. The 3D hand joints are then computed from 2D keypoints. We
perform the multi-view reconstruction with the help of 3D hand joints. Following that, the point clouds, 3D hand joints and
masks are all used to drive a template hand mesh with linear blend skinning (LBS) and non-rigid iterative closest points (ICP).

taneously get the hand region (ROI) and the joints of the hand.
To improve the detection accuracy, we use the regional infor-
mation as feedback to guide the neural network to re-detect
the hand region and the position of the joints. We find that
this strategy can sufficiently achieve good results for our the
3D hand reconstruction as shown in Fig. 4.

3.3. Multi-view Reconstruction

Because the hand skin has almost the same color, and the hand
postures are variable, traditional reconstruction methods for
face will output much noise. To de-noise, apart from the im-
age pyramid and constraint methods, we propose a depth ini-
tialization method based on the estimated 2D keypoints and
an iterative pixel growth method based on Visual Hull.

Depth Initialization. Inspired by the image deformation
[16], we find that the two-dimensional skeleton keypoints of
the hand can be viewed as the control points. The deviation
of the pixels after deformation is very close to the real dis-
parity. Based on this, we initialize the depth in the pairwise
matching combined with the 2D joints location information.
For a pixel p in the image I, we compute the normalized
cross-correlation value and the scaled location value along
the epipolar line.

Taking joints in image I as control points, we deform ev-
ery pixel in image I, targeting joints in image J as,

E(q) =
1−NCC(p, q)
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where the deformed coordinates are stored in map Qref . qref
is the reference coordinate of each pixel p. K makes sure
the location constraints will not be too strong. The joints
represents all the 2D joints in image I, min′ represents the
second minimum, and K0 is a user defined value. For a 1000
pixel wide image, K0 is 0.05. The noise greatly is suppressed
in initialization step in this way.

Iterative Pixel Growth Matching. We also use smoothness
constraint, uniqueness constraint and ordering constraint as
[17] to further exclude noise. Continuous points on the image
may be discontinuous in the 3D space. For example, the mul-
tiple fingers overlap in image but separate in space. In these
cases, noises will not be eliminated. A Visual Hull[18] con-
straint is added to counter this problem. Partial matching re-
sults must be projected to all the masks. The values out of the
volume intersection will be directly deleted. The deleted pix-
els are re-matched around their neighbors to grow new points.
This process are implemented iteratively. Iteration times is
dependent on the image resolution, e.g., 20 iterations for 200
× 300.

3.4. Mesh Model Fitting

We perform the Linear Blend Skinning (LBS) algorithm and
non-rigid iterative closest points (ICP) algorithm by fitting a
template hand mesh to the reconstructed point cloud, as illus-
trated in Fig. 2. More details can be referred in [19]. Finally,
unbiased registered hand meshes are obtained for the output
of our system.

Fig. 3. Dataset. Top Row: 15 views of color images; Middle
Two Rows: selected hand gestures; Bottom Row: selected
hand-object interactions.



4. EXPERIMENT

Dataset. With the proposed system, we have collected multi-
view hand color images with 10 persons of different genders
and skin colors as shown in Fig. 3 and the summary of the
dataset is shown in Tab. 1. The gestures we collected are
very representative and common in daily life. For each per-
son, we collected 50 one-handed gestures and 27 hand-object
interaction gestures, both for the left and right hand. The ges-
tures can be divided into 3 categories: finger-movements[10],
common gestures and hand-object interaction gestures.

Table 1. Multi-view 4K dataset
attributes value

num.subjects 10
num.objects 27
num.cameras 15
num.frames 22K/-
resolution 4K

3D joints annotation 3

3D shape annotation 3

Furthermore, we computed the annotations automatically
for the captured multi-view hand color images, which in-
cludes: 2D & 3D hand joints, 3D point cloud and registered
hand mesh model. Particularly, we detected the multi-view
2D joints with a convolution neural network and computed
the 3D hand joints with camera parameters. Combined with
a template hand mesh, we fitted a LBS model and deformed
it to register 3D point clouds by nonrigid ICP. Fig. 4 shows a

(a) (b) (c) (d)

Fig. 4. (a): Selected color images; (b): 2D hand keypoints;
(c): Fitted hand mesh models overlaid on color images; (d):
Fitted hand mesh models.

(a) (b) (c)

Fig. 5. Comparison with different calibration patterns. (a)
Random pattern with color calibration; (b) Multi-camera cal-
ibration with a ball; (c) A cylinder with random patterns.

small portion of our multi-mode results. We hope the multi-
view hand color images dataset as well as the computed
annotations will promote the research for high-fidelity hand
reconstruction and hand pose estimation in the future.

Beyond that, we also conducted several experiments to
demonstrate the performance of our hardware system. Typ-
ically, we found that camera parameters are crucial for the
accurate hand reconstruction.

Calibration. Since it is difficult to extract consistent fea-
tures on hand surface, all the cameras must be calibrated be-
fore capturing instead of the camera self-calibration. We cal-
ibrated the cameras using intensive grayscale features and
color features. Specifically, we made a wooden geometry
full of the features using a random pattern from Li and Heng
[20]. The object’s size should be limited to the scan volume.
Blurred images of a too big object, shown in Fig. 5(c), leads
to mistakes in calibration. We also tried another multi-camera
calibration in [17] using a ball, and found that its robustness
and accuracy were not as good as the adopted method. Tab. 2
shows the comparison results of different calibration patterns.

Table 2. Comparison with different calibration patterns
Calibration

Patterns
reprojection

error
pairwise
matches

robustness

(a) <0.3 px >300 3

(b) <1.0 px <40 7

(c) <3.0 px >400 7

5. CONCLUSION

In this paper, we present a new multi-view 3D hand recon-
struction system, named as HAND-3D-STUDIO. The main
contribution of this paper is that we public a novel multi-
mode hand dataset including multi-view color images, 2D
hand keypoints, 3D hand skeletal joints and registered hand
mesh models. The proposed dataset would be beneficial for
high fidelity hand reconstruction and hand pose estimation
from single RGB images in the future.
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